

Final Report

British Columbia Computing Education Committee

Flexible Pre-Major Implementation Project

2012 November 30

Revised 2013 June 4

Project Lead: Rick Gee

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page ii

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page iii

Table of Contents

Executive Summary ... 1

Background and Objectives .. 3

Background ... 3

Definition of an FPM ... 4

Project Objectives ... 4

Project Team ... 5

Problem Statement ... 7

Process .. 9

Plan of Meetings ... 9

Sources and Resources ... 10

Revising the outcomes .. 10

Combining the outcomes .. 10

Enabling outcomes and summary outcomes .. 11

Duplication of outcomes ... 12

Not all outcomes have the same weight .. 12

Translating outcomes into courses or vice versa .. 12

Notation .. 12

Baskets .. 13

BCCAT approval, Institutional signoff and beyond ... 22

BCCAT approval ... 22

Institutional signoff ... 23

Questions about signoff .. 23

Communications ... 24

Forms .. 25

Ongoing evaluation ... 25

Recommendations .. 28

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page iv

Acknowledgements ... 30

References .. 32

Appendices .. 34

Appendix 1 - Knowledge and Comprehension Summary Outcomes for Computer Science FPM 35

Appendix 2 - Other Summary Outcomes for Computer Science FPM .. 37

Appendix 3 - Knowledge and Comprehension Summary Outcomes for Computer Information
Systems FPM ... 43

Appendix 4 - Other Summary Outcomes for Computer Information Systems FPM 47

Appendix 5 - The perspective from the registrars .. 55

Can You Touch Your Toes? .. 55

Comments from Other Registrars ... 56

Appendix 6 – Enabling Outcomes – Algorithms and Data Structures ... 58

Appendix 7 – Enabling Outcomes – Computer Architecture .. 64

Appendix 8 – Enabling Outcomes – Hardware ... 68

Appendix 9 – Enabling Outcomes – Information Management ... 71

Appendix 10 – Enabling Outcomes – Introductory Programming .. 74

Appendix 11 – Enabling Outcomes – Networking .. 79

Appendix 12 – Enabling Outcomes – Software Engineering ... 82

Appendix 13 – Enabling Outcomes – Web Learning ... 85

Appendix 14 – Computer Science Flexible Pre-Major Agreement ... 89

Appendix 15 – Computer Information Systems Flexible Pre-Major Agreement 92

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 1

Executive Summary

From December 2007 to December 2009 a subcommittee of the British Columbia Computing Education
Committee (BCCEC) undertook a Flexible Pre-Major (FPM) analysis project, resulting in the conclusion,
described in [Zastre], that an FPM in computing was possible, an FPM that focused on learning
outcomes as a mechanism for comparing the lower-level of programs for equivalence.

More correctly, the report noted that two FPMs are possible, one for Computer Science1 (for students
transferring into the third year of a Computer Science major at a university) and one for Computer
Information Systems2 (for students transferring into the third year of an applied degree program at a
university or a college.)

From January 2010 to October 2012, essentially the same subcommittee (augmented by other
interested instructors and professors) identified outcomes which should be part of one or both of the
FPMs. The major task was to revise and rationalize the learning outcomes (which had been developed as
part of the analysis project), to determine which are applicable to which FPM, and to determine the
level at which the students should meet the outcomes.

This was completed in the spring of 2012.

Once the outcomes were identified and organized, institutions identified courses they offered which
met these outcomes. This was completed in the fall of 2012.

This was followed by obtaining institutional consensus and publicizing the benefits of the approach.

1 Computer Science is the term used at UBC, UVic, and UNBC. Computing Science is the term used at SFU.
2 Computer Information Systems is the term used for the applied degrees at University of the Fraser Valley and
Okanagan College.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 2

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 3

Background and Objectives

Background
As described in [Zastre], BCCEC consists of representatives from post-secondary institutions in British
Columbia which offer computer science, computing science, and computer information systems courses
and programs. The members include teaching-intensive universities, research-intensive universities,
community colleges and institutes, and private post-secondary institutions.

There are many different ways to teach the first computing courses [CS2001] and members of BCCEC
use many of them. Many students start at one institution and transfer to another (or to others) before
completing their programs. Thus, students have difficulty transferring from one institution to another
given that different pedagogical approaches can translate into significantly different courses.

While we would like to be able to provide detailed statistics on student transfers those detailed statistics
are not available and we must rely on anecdotal information and general information. This was
discussed in [Zastre, page 6]. Since that document was completed, [PSM] has provided some statistics.

The details behind the above diagram are available in [PSM].

Our BCCAT System Liaison Person, Neil Coburn, suggested a project to ease the transition between
institutions. BCCAT approved BCCEC's proposal and the Analysis Project began in December 2007.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 4

It was completed in May 2009. BCCEC subsequently applied for funding for an Implementation Project.
While awaiting approval, which came on 19 October 2010, the project committee began work. This is
the Final Report of their work.

Definition of an FPM
Since the reader may be unsure of the meaning of the term Flexible Pre-Major, we begin with a
definition, from [FPM Working Group, page 6].

“Pre-Major refers to the specific lower level pre-requisite courses to third year major
courses. A Flexible Pre-Major is a set of flexible requirements that is, a) deliverable by
sending institutions and acceptable to receiving institutions, and b) deemed to fulfill the
lower level requirements for the major. The nucleus of the FPM is an agreement on a
set of courses that all receiving institutions will accept in lieu of their own specific
course requirements. The aim of the agreement is to sufficiently prepare students to
enter a major program at the third year level with reasonable prospects of academic
success. FPMs are generally expected to work in conjunction with Associate Degrees or
other models where students transfer after completing 60 credits prior to transfer,
although students may be able to transfer successfully into a major at receiving
institutions with fewer credits. The FPM is a formal inter-institutional agreement
facilitating student transfer into majors and is usually accompanied by a grid of
equivalent courses for each category of the major or some similar description of the
courses accepted as pre-major equivalents. The FPM does not guarantee acceptance
into a program or major by the receiving institution since admission is related to other
factors such as GPA. The FPM simply indicates that the student has covered off the
lower level requirements for a major in a specific discipline as agreed upon by the
articulation committee.”

Note that an FPM in a subject area includes only those topics within the subject area that must
be completed in the first two years. For example, the Computer Science FPM includes only the
Computer Science topics students must complete; it does not include the Mathematics, English,
or science courses many universities require nor does it address the breadth requirements of
universities like SFU.

Where the quotation above refers to 60 credits, it is assuming that every course is worth three
credits; 60 credits is therefore 20 courses, a normal full set of courses in the first two years of
baccalaureate study.

At the time of writing, UVic uses units instead of credits. 1.5 units = 3 credits.

Project Objectives
Since [Zastre] indicated that an FPM was achievable for computer science and that an FPM was
achievable for computer information systems, this Implementation Project had two major goals:

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 5

1. To develop an FPM for computer/computing science.
2. To develop an FPM for computer information systems.

Both of these FPMs include their adoption by the institutions involved and developing a process to
ensure the FPMs are kept up to date.

From the contract between BCCEC and BCCAT for this Implementation Project, the complete list of
deliverables for the project follows.

1. A summary of the student transfer patterns in Computer Science and Computer Information
Systems

2. An updated version of the Learning Outcomes outlined in the Appendices to the FPM Analysis
Report

3. A definition of the Flexible Pre-Majors in the Computer Science and Information System
streams. As institutions are used to course-by-course transfer, this definition will list the learning
outcomes for an FPM and will also include a list of courses (a “basket of courses”) for each
institution, the sum of whose outcomes matches [a defined percentage of] those of the FPM.

4. Grids for the two FPMs that outline the specific courses that make up the “basket” at each post-
secondary institution

5. A rationale section that explains how the Flexible Pre-Majors will assist students, as well as post-
secondary institutions

6. A list of BC post-secondary institutions that have agreed to implement one or both of the
Flexible Pre-Majors, with evidence of formal agreement in the form of institutional signoffs

7. Description of a process for the BCCEC to review and update the two Flexible Pre-Majors on a
regular basis

Project Team
The members of the project team which developed the Analysis Report were so excited about the
project that all members wanted to continue to the implementation team. Unfortunately, institutional
changes prevented some members from continuing. Those who continued were joined by other BCCEC
members. Participating individuals (alphabetically by last name within institution) and their institutions
(alphabetically) were:

Alexander College: Gordon Simon

British Columbia Institute of Technology (BCIT): Bill Klug, Brian Pidcock

Langara College: Mingwu Chen, Bryan Green

Okanagan College: Rick Gee

Selkirk College: Rita Williams

Simon Fraser University (SFU) Burnaby campus: Diana Cukierman, Anne Lavergne

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 6

Thompson Rivers University (TRU): Mohd Abdullah, Surinder Dhanjal

University of British Columbia (UBC) Vancouver campus: Donald Acton, Ed Knorr

University of the Fraser Valley (UFV): Paul Franklin

University of Northern British Columbia (UNBC): David Casperson

University of Victoria (UVic): Michael Zastre

Naming an institution above does not imply support of the institution; it simply states that one or more
employees of that institution was/were involved and provided personal perspective.

Alexander College was a new member of the project team, representing private colleges within BC, a
perspective which was previously lacking.

Additional assistance and advice was provided by Jennifer Orum, Fiona McQuarrie, and John FitzGibbon
from BCCAT.

As [FPM Working Group] points out, the person signing off the FPM at an institution may vary from
institution to institution. For the sake of this report, we will refer to that person as the registrar.
Unfortunately the BC Registrars Association has spoken against including FPM notation on the transcript
[FPM Working Group, page 8]. See also the appendices for the opinions of several registrars.

Thus, missing from the project team was a registrar. Our decision was to leave registrar consultation at
the level of committee-member exchanges with their institution’s Office of the Registrar.

The project lead was Rick Gee.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 7

Problem Statement

Given the learning outcomes identified in [Zastre], how can they be improved and then combined to
produce a usable guide?

Behind that simple question is a great deal of discussion and other work which is described in two of the
outcomes in the Implementation Project proposal.

1. A definition of the Flexible Pre-Majors in the Computer Science and Information System
streams, most likely described in terms of the learning outcomes that need to be covered in the
“basket of courses” for each stream

2. Grids for the two FPMs that outline the specific courses that make up the “basket” at each post-
secondary institution

Upon completion of those two outcomes, other aspects of the other outcomes came into play. These
include efforts to obtain department approval at each institution, obtaining upper-level administration
approval at each institution, handling disagreements or concerns, etc. These are more fully described in
[FPM Working Group, section 3 and Appendices III and IV].

We should note that there are several other FPMs underway in BC [Fiona McQuarrie, personal
communication 2012-03-12].

• The Economics FPM has recently been completed.
• The English FPM is well-recognized and most post-secondary institutions in BC are participants.
• The Psychology FPM is recognized by approximately half the post-secondary institutions in BC.
• The Sociology and Anthropology FPMs are garnering signoffs.

There was a Music FPM but it was cancelled in May 2011. Details on other FPMs and their progress, or
lack thereof, are provided in [FPM Working Group, Appendix II].

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 8

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 9

Process

Plan of Meetings
The project was funded for a series of in-person meetings (some official, some unofficial), as we had
found that they were much more productive than meetings at a distance. Some were held in
conjunction with BCCEC articulation meetings; others were held independently.

The meeting dates were:

2010 May 6 – Okanagan College, Kelowna: in conjunction with the BCCEC spring meeting

2010 October 21 and 22 – College of the Rockies, Cranbrook: in conjunction with the BCCEC fall meeting

2011 May 4 and 5 – College of New Caledonia, Prince George: in conjunction with the BCCEC spring
meeting

2011 October 20 and 21 – Douglas College, New Westminster; in conjunction with the BCCEC fall
meeting

2011 December 9 – Langara College, Vancouver.

2012 February 15 – Okanagan College, Kelowna: between Bryan Green and Rick Gee

2012 May 3 – UBC, Vancouver: in conjunction with the BCCEC spring meeting.

2012 October 25 and 26 – NWCC, Prince Rupert: in conjunction with the BCCEC fall meeting

For the first three meetings, the project team met prior to the BCCEC meeting and then BCCEC devoted
a portion of its meeting time to discussion and break-out sessions on the various subject areas.

The 2011 December meeting was limited to the project team, who convened for an intense day of
discussions at Langara College.

The 2012 February meeting involved Bryan (visiting family in Kelowna during his Reading Break) and Rick
(based in Kelowna). Our specialities overlap but are not congruent, so Bryan was able to clarify some of
the areas in which Rick was confused.

The 2012 May meeting resulted in some conceptual breakthroughs, which led BCCEC to request, and be
granted, a six-month extension to the project.

The 2012 October meeting reviewed this report and set the course for the future.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 10

Sources and Resources
The main resource was [Zastre] which contained the initial drafts of learning outcomes. Over the course
of the meetings these outcomes were supplemented, trimmed, massaged, and otherwise processed.
The first decision made was to remove the word “understand” from the outcomes. In the committee's
opinion, you can't measure understanding.

The objectives involving “understand” were rephrased to more clearly describe the outcome in a
manner providing better guidance to those writing evaluation instruments and to those comparing
academic programs.

Revising the outcomes
As project lead, Rick Gee took on the task of managing a significant revision of the learning outcomes.
This included clarifying wording, adding and deleting outcomes, and ordering the outcomes. This was
done via frequent consultation with other members of the project team.

Combining the outcomes
The outcomes were derived from eight subject areas.

• Algorithms and Data Structures
• Computer Architecture
• Hardware
• Information Management
• Introductory Programming
• Networking
• Software Engineering
• Web Learning

All of these areas are deemed appropriate for studies at the first- and second-year levels.

Note that there is some overlap between and among these areas. Notable examples include Computer
Architecture/Hardware/Networking and Introductory Programming/Algorithms and Data
Structures/Software Engineering.

The FPM committee identified the following areas for the FPM for Computer Science.

• Algorithms and Data Structures
• Computer Architecture
• Introductory Programming
• Software Engineering

The FPM committee identified the following areas for the FPM for Computer Information Systems.

• Algorithms and Data Structures

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 11

• Hardware
• Information Management
• Introductory Programming
• Networking
• Software Engineering
• Web Learning

The FPM for Computer Science includes fewer areas since those students have additional breadth
requirements (English writing skills, Mathematics, Sciences, foreign languages, etc.) that are more
extensive than those for students in Computer Information Systems.

Enabling outcomes and summary outcomes
Bloom's taxonomy in the cognitive domain [Bloom] has various levels, including (from simplest through
most-complex): knowledge, comprehension, application, analysis, synthesis and evaluation. Knowledge
outcomes are relatively simple, sometimes involving only memorization, while evaluation outcomes (the
highest level) involve making complex judgments.

These categories of Bloom’s taxonomy of the cognitive domain are from Bloom’s original work. Since
adopting those categories, the FPM committee has become aware, via [Johnson], of a 2001 revision, in
[Anderson], to the names of the levels. These new names are remembering, understanding, applying,
analysing, evaluating, and creating. The FPM has chosen to continue to use the original terms.

While providing examples of outcomes [Bloom] uses verbs applicable to many areas of study. These
verbs are used in the enabling outcomes. For example, [BCIT] includes the verbs define, identify, label,
list, name, recall, and state as suitable for outcomes at the knowledge level. Describe, discuss, explain,
locate, paraphrase, give an example, and translate are suitable for outcomes at the comprehension
level.

[Fuller at al] and [Gluga et al] provide examples specifically from Computer Science and Computer
Information Systems.

For each of the eight areas above, we developed lists of enabling outcomes. These are low level
outcomes that define quite precisely what it means to say the student has achieved the outcome. These
are (usually) cognitive and (occasionally) psychomotor outcomes; we did not explore affective
outcomes.

For each area, the list of enabling outcomes typically included 100 or more entries. But a list of over 100
outcomes is an intimidating list. For each area we have summarized the enabling outcomes into a
smaller set of summary outcomes. In the spreadsheets underlying this report, each summary outcome
lists its enabling outcomes. The enabling outcomes are not included in this report but are available
electronically.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 12

Our intent is that programs are to be compared at the level of summary outcomes. Where uncertainty
or disagreement exists when using a summary outcome, departments will refer to the corresponding
enabling outcomes.

Duplication of outcomes
While the subject areas are distinct, there have been a number of cases where the same or similar
outcomes came from two areas. The most common overlap is in the Introductory Programming,
Software Engineering, and Algorithms areas.

Duplicates have been identified.

A draft of the outcomes was included in [Zastre]. The final outcomes (organized alphabetically and by
FPM) appear in the appendices to this report.

Not all outcomes have the same weight
It is not appropriate to say that a student has completed an FPM when she/he has completed X% of the
outcomes. That X% may involve very many outcomes appearing lower in Bloom’s taxonomy with
relatively fewer higher in the taxonomy.

However, in our committee's opinion it is appropriate to say that a student has completed an FPM when
she/he has completed X% of the knowledge and comprehension outcomes and Y% of the other
outcomes. What should X and Y be?

Current transfer practices, confirmed at the October 2012 BCCEC meeting, imply that X and Y are in the
range of 70-80% [Zastre, pp 15-6].

Based on intimate acquaintance with the outcomes, the author suggests that X should be 80% and Y
should be 70%. That is, a student has completed an FPM if she/he has completed 80% of the knowledge
and comprehension outcomes listed and 70% of the other outcomes listed. The October 2012 BCCEC
meeting confirmed these percentages.

The summary outcomes are listed in the appendices, organized alphabetically and by FPM.

Translating outcomes into courses or vice versa
Student transcripts are written in terms of courses, not of learning outcomes. Thus it will be easier for
students to transfer if they can provide either a statement that they have completed an FPM or they can
prove they have completed a collection of courses which together satisfy the FPM outcomes.

Notation
The committee feels a notation on a transcript would be preferable; however, there is institutional
resistance to the addition of notations on transcripts.

Until the May 2012 BCCEC meeting, the recommendation of this report was to be that departments
provide letters to students stating they have completed the FPM at the sending institution and the

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 13

department at the receiving institution will need to deal with their Registrar's Office to ensure the
correct course transfer is applied.

By incorporating the baskets of courses (described more fully below) into an FPM recorded by BCCAT,
the necessity for department letters has disappeared.

Baskets
Proving completion of a collection of courses is the more traditional approach and hence should be
accommodated. This is one of the deliverables of this Implementation Project.

The following table identifies the courses which each institution has identified as providing the learning
outcomes for the FPMs. In the second column of the table, the courses on one line are alternatives
which both provide the same or sufficiently similar outcomes. Courses on separate lines each provide
outcomes towards the FPM, and the courses on separate lines must all be completed successfully for
the student to earn the FPM.

The Computer/Computing Science FPM does not specify a discrete mathematics course as the FPM
focuses on Computer/Computing Science courses. For the convenience of all concerned, many
institutions have specified discrete mathematics courses that students should take.

Note that certain institutions (Grande Prairie Regional College, Mount Royal University, Northern
Alberta Institute of Technology, Red Deer College, and Southern Alberta Institute of Technology) are
included in this table as they have participated in BCCEC in the past and as there is movement of
students between BC and Alberta. These institutions are not members of the BC transfer system and will
thus not be signing off on these FPMs.

Note that certain institutions which are members of the BC transfer system have not been included as
they have not participated in BCCEC recently or do not offer courses towards the FPM.

Institutions whose names are in italics support the concept of the Computer Science Flexible Pre-Major
but do not offer students all the courses to complete it at this time. Students may investigate
institutions offering online courses to complete their missing courses.

 FPM for Computer/Computing Science
Institution Courses

Alexander College CPSC 111 Introduction to Computation
CPSC 112 Introduction to Programming
CPSC 115 Discrete Structures

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 14

Athabasca University COMP 206 Introduction to Computer Programming
(C++) or COMP 268 Introduction to Computer
Programming (Java)
COMP 272 Data Structures and Algorithms (Java)
COMP 410 Software Engineering
MATH 309 Discrete Mathematics

BCIT COMP 1510 Programming Methods
COMP 2721 Computer Organization/Architecture
COMP 3760 Algorithm Analysis and Design
COMP 8081 Management Issues in Software
Engineering

Camosun College COMP 132 Programming Using Java
COMP 139 Applied Computer Programming
COMP 182 Architecture and Programming
COMP 210 Data Structures and Algorithms
COMP 235 Software Engineering

Capilano University COMP 121 Fundamentals of Programming
COMP 126 Principles of Software Design
COMP 134 Programming in Java
COMP 210 Data Structures and Abstraction
COMP 211 Computer Design and Architecture I
COMP 212 Computer Design and Architecture II
COMP 213 Introduction to Software Engineering
MATH 124 Discrete Mathematics

College of New Caledonia CSC 109 Computing Science I
CSC 110 Computing Science II
CSC 115 Discrete Computational Mathematics I
CSC 212 Object-Oriented Software Development
CSC 214 Introduction to Computer Systems
CSC 215 Discrete Computational Mathematics II
CSC 216 Introduction to Data Structures
CSC 218 Introduction to Software Engineering
CSC 224 Computer Organization

College of the Rockies COMP 105 Introduction to Programming in the C
and C++ Languages
COMP 106 Intermediate C++, 3D Graphics, and
Numerical Methods

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 15

Columbia College* CSCI 120 Introduction to Computing Science and
Programming I
CSCI 125 Introduction to Computing Science and
Programming II
CSCI 150 Introduction to Digital and Computer
System Design
CSCI 225 Data Structures and Programming
CSCI 250 Introduction to Computer Architecture
CSCI 275 Software Engineering

Coquitlam College CSCI 120 Introduction to Computer Science and
Programming I (Python)
CSCI 125 Introduction to Computer Science and
Programming II (Java)
CSCI 150 Introduction to Computer Design
CSCI 201 Data & Program Organization or CSCI 225
Data Structures and Programming
CSCI 275 Software Engineering
MACM 101 Discrete Mathematics I

Douglas College CMPT 1110 Introduction to Computing Science
Using C++
CSIS 1275 Java Programming
CSIS 2475 Data and Control Structures
MATH 1130 Discrete Mathematics I
MATH 2230 Discrete Mathematics II

Grande Prairie Regional College (AB) CS 1140 Introduction to Computing Science
CS 1150 Elementary Data Structures
CS 2010 Practical Programming Methodology
CS 2290 Computer Organization and Architecture I
CS 3290 Computer Organization and Architecture II

Kwantlen Polytechnic University CPSC 1103 Introduction to Computer Programming
I
CPSC 1204 Introduction to Computer Programming
II
CPSC 1250 Introduction to Computer Design
CPSC 2302 Data Structures and Program
Organization
CPSC 2405 Introduction to Discrete Mathematics I

Langara College CPSC 1150 Program Design
CPSC 1160 Algorithms and Data Structures I
CPSC 1181 Object-oriented Computing
CPSC 2150 Algorithms and Data Structures II
One of CPSC 2180 Computing Architecture or 2401
Digital Systems Design
CPSC 2190 Theoretical Foundations of Computer
Science

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 16

Mount Royal University (AB) COMP 1501 Programming I: Introduction to
Problem Solving and Programming
COMP 1502 Programming II: Object Oriented
Programming
COMP 2503 Programming III: Data Structures
COMP 2531 Computer Architecture and Operating
Systems

North Island College CPS 100 Computer Programming I
CPS 101 Computer Programming II
CPS 212 Discrete Mathematics & Computer
Science

Northern Alberta Institute of Technology CMPE 1300 Fundamentals of Programming
CMPE 1600 Event-driven Programming
CMPE 1700 Data Structures and Algorithms
CMPE 2300 Object-Oriented Programming

Northern Lights College CPSC 111 Computer Science and Information
Technology
CPSC 122 Introduction to Object Oriented
Programming C++

Northwest Community College CPSC 123 Computer Programming
Okanagan College COSC 111 Computer Programming I

COSC 121 Computer Programming II
COSC 211 Machine Architecture
One of COSC 221 Introduction to Discrete
Structures or MATH 251 Introduction to Discrete
Structures
COSC 222 Computer Data Structures

Red Deer College (AB) Relevant programs have been suspended until
further notice.

Selkirk College Selkirk College offers only two courses towards the
CS FPM.
CPSC 100 Introduction to Programming I
CPSC 101 Introduction to Programming II

Simon Fraser University (Burnaby) Both CMPT 120 Introduction to Computer Science
and Programming I and CMPT 125 Introduction to
Computing Science and Programming II, or CMPT
126 Introduction to Computing Science and
Programming
CMPT 150 Introduction to Computer Design
CMPT 225 Data Structures and Programming
CMPT 250 Introduction to Computer Architecture
CMPT 275 Software Engineering I
MACM 101 Discrete Mathematics I

Southern Alberta Institute of Technology SAIT appears to have no courses which apply to
this FPM.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 17

Thompson Rivers University COMP 1130 Computer Programming 1
COMP 1230 Computer Programming 2
COMP 1380 Discrete Structures 1 for Computing
Science or MATH 1700 Discrete Mathematics 1
COMP 1390 Discrete Structures 2 for Computing
Science or MATH 1390 Discrete Structures 2 for
Computing Science
COMP 2130 Introduction to Computer Systems
COMP 2230 Data Structures, Algorithm Analysis
and Program Design
COMP 3520 Software Engineering

Trinity Western University CMPT 140 Introduction to Programming
CMPT 150 Introduction to Discrete Math
CMPT 166 Intermediate Programming
CMPT 231 Data Structures and Algorithms
CMPT 242 Computing Machine Organization

UBC (Vancouver campus) CPSC 110 Computation, Programs, and
Programming
CPSC 121 Models of Computation
CPSC 210 Software Construction
CPSC 213 Introduction to Computer Systems
CPSC 221 Basic Algorithms and Data Structures

UBC (Okanagan campus) COSC 111 Computer Programming I
COSC 121 Computer Programming II
COSC 211 Machine Architecture
COSC 221 Introduction to Discrete Structures
COSC 222 Data Structures

University of Northern BC CPSC 100 Computer Programming I
CPSC 101 Computer Programming II
CPSC 141 Discrete Computational Mathematics
CPSC 200 Algorithm Analysis and Development
CPSC 222 Introduction to Concurrent and
Distributed Programming
CPSC 230 Introduction to Logic Design
CPSC 231 Computer Organization and Architecture
CPSC 242 Mathematical Topics for Computer
Science
CPSC 260 Ethics in Computing Science
CPSC 281 Data Structures I

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 18

University of the Fraser Valley COMP 125 Principles of Computing
One of COMP 150 Introduction to Programming or
COMP 152 Introduction to Structured
Programming
COMP 155 Object-oriented Programming
COMP 251 Data Structures and Algorithms
COMP 256 Introduction to Machine Architecture

University of Victoria CSC 110 Fundamentals of Programming I
CSC 115 Fundamentals of Programming II
CSC 225 Algorithms and Data Structures
CSC 230 Introduction to Computer Architecture
MATH 122 Logic and Foundations
SENG 265 Software Development Methods

Vancouver Island University CSCI 160 Computing Science I
CSCI 161 Computing Science II
CSCI 260 Data Structures
CSCI 261 Computer Architecture & Assembly
Language
CSCI 265 Software Engineering

Yukon College CPSC 128 Object-Oriented Programming I
CPSC 129 Object-Oriented Programming II
MATH 130 Finite Mathematics

Institutions whose names are in italics support the concept of the Computer Information Systems
Flexible Pre-Major but do not offer students all the courses to complete it at this time. Students may
investigate institutions offering online courses to complete their missing courses.

FPM for Computer Information Systems
Institution Courses

Alexander College CPSC 111 Introduction to Computation
CPSC 112 Introduction to Programming
CPSC 115 Discrete Structures

Athabasca University COMP 206 Introduction to Computer Programming
(C++) or COMP 268 Introduction to Computer
Programming (Java)
COMP 266 Introduction to Web Programming
COMP 272 Data Structures and Algorithms (Java)
COMP 347 Computer Networks
COMP 361 Systems Analysis and Design
COMP 378 Introduction to Database Management

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 19

BCIT COMP 1510 Programming Methods
COMP 1536 Introduction to Web Development
COMP 2714 Relational Database Systems
COMP 2721 Computer Organization/Architecture
COMP 3721 Introduction to Data Communications
COMP 3760 Algorithm Analysis and Design

Camosun College COMP 132 Programming Using Java
COMP 139 Applied Computer Programming
COMP 155 Database Concepts
COMP 162 Intro to Computers and the Web
COMP 173 Computer Network Programming
COMP 182 Architecture and Programming
COMP 210 Data Structures and Algorithms
COMP 230 Systems Analysis and Design
COMP 235 Software Engineering

College of New Caledonia CSC 109 Computing Science I
CSC 110 Computing Science II
CSC 115 Discrete Computational Mathematics I
CSC 212 Object-Oriented Software Development
CSC 214 Introduction to Computer Systems
CSC 215 Discrete Computational Mathematics II
CSC 216 Introduction to Data Structures
CSC 218 Introduction to Software Engineering
CSC 224 Computer Organization

College of the Rockies COMP 105 Introduction to Programming in the C
and C++ Languages
COMP 106 Intermediate C++, 3D Graphics, and
Numerical Methods
COMP 155 Database Management
COMP 165 Introduction to Web Programming

Columbia College CSCI 120 Introduction to Computing Science and
Programming I
CSCI 125 Introduction to Computing Science and
Programming II
CSCI 150 Introduction to Digital and Computer
System Design
CSCI 225 Data Structures and Programming
CSCI 250 Introduction to Computer Architecture
CSCI 275 Software Engineering

Coquitlam College Coquitlam College does not offer courses to meet
the requirements of the CIS FPM

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 20

Douglas College CMPT 1110 Introduction to Computing Science
Using C++
CSIS 1150 Business Data Communications &
Networking
CSIS 1155 Hardware maintenance Concepts
CSIS 1275 Java Programming
CSIS 1280 Multimedia Web Development
CSIS 2300 Database Management Systems

Grande Prairie Regional College (AB) CS 1140 Introduction to Computing Science
CS 1150 Elementary Data Structures
CS 2000 Data Communications and Networking
CS 2010 Practical Programming Methodology
CS 2210 Introduction to PC Hardware and Systems
Configuration
CS 2910 Introduction to File and Database
Management
CS 3610 Systems Analysis and Design
CS 3990 Topics in Internet Technologies

Kwantlen Polytechnic University CPSC 2302 Data Structures and Program
Organization
INFO 1111 Introduction to Computer Hardware
and Software
INFO 1112 Principles of Program Structure and
Design
INFO 1113 System Analysis and Design
INFO 1212 Networking Technologies I
INFO 1213 Web Application Development
INFO 1214 Discrete Mathematics for Information
Technology
INFO 2311 Networking Technologies II
INFO 2312 Database Management Systems
INFO 2313 Object Oriented Programming

Langara College CPSC 1030 Web Development I
CPSC 1150 Program Design
CPSC 1160 Algorithms and Data Structures I
CPSC 1280 Unix Tools and Scripting
CPSC 1480 Networking
One of CPSC 2030 Web Development II or CPSC
2261 Web Technology
CPSC 2221 Data Base Systems
CPSC 2301 Software Engineering
CSIS 1410 Fundamentals of Microcomputers

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 21

North Island College CPS 100 Computer Programming I
CPS 101 Computer Programming II
CPS 120 Introduction to PC Communications
CPS 146 Database Fundamentals
CPS 151 Systems Analysis & Design
CPS 165 Web Design Tools
CPS 180 PC Hardware & Troubleshooting
CPS 212 Discrete Mathematics & Computer
Science
CPS 236 Internet Programming
CPS 262 Data Communications & Computer
Networks

Northern Alberta Institute of Technology CMPE 1300 Fundamentals of Programming
CMPE 1600 Event-driven Programming
CMPE 1700 Data Structures and Algorithms
CMPE 2300 Object-Oriented Programming

Northern Lights College CPSC 111 Computer Science and Information
Technology
CPSC 122 Introduction to Object Oriented
Programming C++

Northwest Community College CPSC 123 Computer Programming
Okanagan College COSC 111 Computer Programming I

One of COSC 118 Networks and
Telecommunications I or NTEN 117 Networks and
Telecommunications I
COSC 121 Computer Programming I
COSC 126 Systems Analysis and Design
One of COSC 150 Digital Logic and Microcomputer
Hardware or NTEN 126 Digital Logic and
Microcomputer Hardware
COSC 211 Machine Architecture
COSC 219 Client-side Web Systems
COSC 222 Computer Data Structures
COSC 304 Introduction to Database Management
Systems

Red Deer College (AB) Relevant programs have been suspended until
further notice.

Selkirk College CPSC 100 Introduction to Programming I
CPSC 101 Introduction to Programming II

Southern Alberta Institute of Technology SAIT appears to have no courses which apply to
this FPM.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 22

University of the Fraser Valley CIS 145 Web Publishing
CIS 190 Systems Hardware Concepts
CIS 192 Introduction to Networking
CIS 230 Databases and Database Management
Systems
CIS 270 Analysis and Design
CIS 291 Networking Theory and Applications
COMP 125 Principles of Computing
One of COMP 150 Introduction to Programming or
COMP 152 Introduction to Structured
Programming
COMP 155 Object-oriented Programming
COMP 251 Data Structures and Algorithms
COMP 256 Introduction to Machine Architecture

Yukon College ICT 102 Computer Hardware
ICT 106 Introduction to Programming
ICT 108 Operating Systems I
ICT 112 Foundations – Web Development
ICT 114 Networking
ICT 118 Operating Systems II
ICT 214 Database Design
ICT 216 Database Management

Following discussion at the spring 2012 BCCEC meeting, the decision was made to use the enabling and
summary learning outcomes to identify baskets of courses and then incorporate those baskets into the
FPMs. That is, the outcomes will be maintained by BCCEC as a guide to assist institutions in identifying
the courses in their baskets. More and more institutions are formally stating the outcomes for their
courses, so the translation of outcomes into courses should not be a problem. In fact, this translation
may encourage all institutions to provide learning outcomes for their courses.

As a result, the FPM agreements for Computer/Computing Science and Computer Information Systems
will look similar to those from other disciplines, in spite of the different path we have followed in
identifying the courses.

In particular, we envisage the FPMs as consisting of a table containing two columns, as shown above.

BCCAT approval, Institutional signoff and beyond

BCCAT approval
Completion of this report does not mean the FPM is in place.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 23

BCCAT must approve the FPM report. It is hoped this will happen at the first meeting of its Transfer and
Articulation Committee (TAC) following the submission of this report. TAC is expected to meet in late
January.

After receiving BCCAT’s approval, the baskets of courses will be publicized through BCCAT’s website.

While awaiting, and after receiving, BCCAT approval, institutional support will be obtained, using the
signoff process described below.

Institutional signoff
[FPM Working Group, page 8] comments on institutional signoff.

“… [T]he method for gaining agreement from an institution to participate in a FPM may
vary by institution. For example, in some institutions, the Senate delegates the authority
for these kinds of items to a standing committee or subcommittee. Since FPMs are not
programs, the approval process might not be tied to a specific decision-making process
in the institution. However, because the FPM is a formal inter-institutional agreement, it
might go to the institutional governing body for approval, a process that would also
enhance visibility of the agreement. Working Group members noted that a formal
process would highlight agreements with senior staff in institutions but would also add
significantly to the amount of time required to get all institutions to sign the agreement.
The information gathered from the institutional decision-making maps and housed at
BCCAT acts as a check for the signature gathering phase, i.e., collecting formal approval
from each of the participating institutions. The Working Group developed a signoff
sheet to be used by institutions to confirm their participation in specific FPMs.”

The signoff sheet referred to in the last sentence is available in [FPM Working Group, Appendix VI].

Members of the project group will be approaching their institutions for adoption of this report. This
report will be updated as adoptions happen.

Questions about signoff
If an institution offers all the courses necessary to meet the outcomes of the FPM, that institution will be
able to consider signing off.

If an institution does not offer all the courses necessary to meet the outcomes of the FPM, can it sign off
on the FPM? Yes, as long as it can direct the students to courses from other institutions which provide
the missing outcomes [Fiona McQuarrie, personal communication 2012-05-02]. These other institutions
may be neighbouring institutions, an option available where there are two or more local post-secondary
institutions, or they may be institutions which offer distance courses.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 24

Communications
Once institutional signoff is complete, the information about the FPM must be made available to the
students. [FPM Working Group, pages 9 and 10] addresses this under the headings Student Advising and
Communication about Flexible Pre-Majors.

7. Student Advising

The goal of the FPM is to provide more information to students contemplating transfer
directly into a major at another institution. In order to be useful, student information
about FPMs needs to be clear, easy to use, reliable, and consistent. Therefore, the
advising of students, both at their initial institution and at the one to which they are
seeking to transfer is an important consideration. Providing information about the FPM
is made more difficult when receiving institutions do not know students’ intentions
regarding entering a major until they actually declare it. It is difficult to track declaration
of majors once a student is registered, as the admission to the major is often a
departmental decision.

Institutions that participate in a FPM may choose to advertise the existence of the
agreement in a number of ways. For example, the institution may package the FPM with
an Associate Degree, thereby encouraging students to complete and transfer with 60
credits and a credential. However, students who have already determined that they will
transfer to another institution as soon as they have completed lower-level general
degree requirements may choose to transfer before the full two years or 60 credits is
completed. In institutions where students routinely transfer with less than 60 credits,
the sending institutions might advise students how to complete FPM requirements
before they transfer.

In addition to institutional advising for students, FPMs will be included in the BC
Transfer Guide as tags on courses that are listed as part of a FPM. When using the BC
Transfer Guide search mechanism, if a student clicks on a 100 or 200 level course in a
subject with a FPM agreement, for an institution that is participating, the search results
will include an information box on FPMs and more information about the FPM in that
discipline. The student can click the box and find out more about what a FPM is and the
course grid for the discipline. A FPM will be included in the BC Transfer Guide when a
critical mass of institutions has signed off. Only participating institutions will be referred
to with other institutions added as they sign off on the agreement. Non-participating
institutions will not be included.

As articulation committees update the grid of courses on an annual basis, the
information should be forwarded to BCCAT staff for inclusion in the BC Transfer Guide
as well as any changes to the agreement resulting from the regular review.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 25

8. Communication about Flexible Pre-Majors

Articulation committee faculty members have difficulties in drawing issues like FPM to
the attention of senior staff in their institutions, thereby holding up the discussion and
signoff processes for FPMs. The Working Group suggested that BCCAT act as the conduit
for information on FPMs in process to the associations of registrars, academic vice-
presidents, deans, governing body chairs, and others likely to be involved as decision-
makers. This can be done through presentations or newsletters addressed to these
associations, or through presentations to individual institutions or groups of institutions.

Students are the key group to communicate with regarding FPMs. This can be done by
notes on the institutional calendar or website, on the BC Transfer Guide site, and in the
advising offices of the institutions. Others that should know about FPMs are the deans
of the disciplines involved, mostly Deans of Arts and Science. Academic VPs should be
aware of the implications of FPMs and know that they are being implemented in their
institutions. Generally, the responsibility for disseminating information regarding FPMs
in any discipline lies with the articulation committee representative and the faculty
members involved. In order to aid the communication process generally, the Group
elaborated on a set of Frequently Asked Questions initially developed as part of the
Psychology FPM.

As noted above, until the spring 2012 BCCEC meeting, the recommendation of this report was to be that
departments provide letters to students stating they have completed the FPM at the sending institution
and the department at the receiving institution will need to deal with their Registrar's Office to ensure
the correct course transfer is applied.

By incorporating the baskets of courses into a FPM recorded by BCCAT, the necessity for department
letters has disappeared. But the need for institutional approval remains.

Forms
[FPM Working Group, Appendix V, pages 21 and 22] provide a template you may use to determine the
process within your institution for obtaining that approval.

[FPM Working Group, Appendix VI, pages 23 and 24] provide a template for an institutional signoff on
the FPM. Based on that template, signoffs specific to the Computer Science (Appendix 8) and Computer
Information Systems (Appendix 9) FPMs are provided.

Ongoing evaluation
The computing field continues to change at a rapid pace. For an FPM to maintain currency, some body
or group needs to ensure that the FPM changes with the field. The obvious body or group is the BCCEC
itself.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 26

The recommendation is that the BCCEC meeting in the spring (late-April or early-May) should have a
standing agenda item to review the Computer Science and Computer Information Systems FPMs.
Whenever changes are deemed necessary, BCCEC will strike an ad hoc committee to make those
changes and communicate them to all members of BCCEC.

Note that many computing (used in the broadest sense) principles remain the same but the
implementation of them may change.

Principles change too and an FPM must be a living project.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 27

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 28

Recommendations

That BCCEC adopt the Computer Science and Computer Information Systems FPMs as described in this
report and continue to review them for currency.

BCCEC meetings in the spring (late-April or early-May) should have a standing agenda item to
review the Computer Science and Computer Information Systems FPMs. Whenever changes are
deemed necessary, BCCEC will strike an ad hoc committee to make those changes and
communicate them to all members of BCCEC.

That BCCEC encourage post-secondary institutions and their departments to participate in the
Computer Science and Computer Information Systems FPMs.

BCCEC members are encouraged to work with their registrars or other approvers to publicize and
gain acceptance for the concept of FPM. This recommendation is in agreement with
Recommendation 8 in [FPM Working Group].

That BCCEC member institutions, departments, and department members inform their students of the
existence of the Computer Science and Computer Information Systems FPMs and encourage their
students to complete the Computer Science and Computer Information Systems FPMs.

This recommendation is in line with Recommendation 9 in [FPM Working Group].

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 29

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 30

Acknowledgements

The project committee would like to thank:

• From the Analysis project
o Michael Zastre (University of Victoria), for so ably leading the Analysis Project which

provided us with a solid foundation on which to build
o all other committee members

• From BCCAT
o Jennifer Orum, for providing advice and guidance all through the process, until her

retirement
o Fiona McQuarrie, for providing advice and guidance following Jennifer's retirement
o John FitzGibbon, for providing advice and guidance as the project progressed.

The editor would like to thank:

• All the members of the Implementation Project committee for their ideas, assistance, and time,
especially

o Bryan Green (Langara College) for acting as cheerful host of the project committee, for
providing a crucial idea at just the right time, and for his editing of earlier versions of
this document;

o Ed Knorr (UBC Vancouver campus), for his editing of the spreadsheets and earlier
versions of this document

o Donald Acton (UBC Vancouver campus), for finding the ‘‘Can You Touch Your Toes” blog
entry

o Michael Zastre (University of Victoria), for his editing of earlier versions of this
document.

• From BCCAT
o Fiona McQuarrie, for providing advice and guidance following Jennifer's retirement
o John FitzGibbon, for providing advice and guidance as the project progressed.

Thank you all.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 31

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 32

References

[Anderson] “A taxonomy for learning, teaching and assessing: A revision of Bloom's Taxonomy of
educational objectives: Complete edition”. Anderson, L. W., & Krathwohl, D. R. (Eds.). Longman (New
York) 2001.

[BCIT] “Writing Learning Outcomes”. Anonymous. Undated. Available (as of 2012 11 05) at
https://helpdesk.bcit.ca/fsr/teach/teaching/ja_learningoutcomes.pdf

[Bloom] “Taxonomy of Educational Objectives: The Classification of Education Goals (Handbook 1,
Cognitive Domain)”. Benjamin Bloom, Editor, Longmans, Green (New York, Toronto). 1956

[CS2001] “Computing Curricula 2001, Final Report”. The Joint Task Force on Computing Curricula,
Institute for Electrical and Electronics Engineers (IEEE) Computer Society, and the Association for
Computing Machinery (ACM). December 2001. Available (as of 2012 11 05) at
http://www.acm.org/education/curric_vols/cc2001.pdf

[FPM Working Group] “Flexible Pre-Majors: Final Report of the Flexible Pre-Majors Working Group”.
John FitzGibbon and Jennifer Orum in consultation with the Flexible Pre-Majors Working Group. BCCAT,
2011. Available (as of 2012 11 05) at http://www.bccat.ca/pubs/FPMFinalReport.pdf

[Fuller et al] “Developing a Computer Science-specific Learning Taxonomy”. Ursula Fuller, Colin G.
Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy
L. Lewis, Donna McGee Thompson, Charles Riedesel, Errol Thompson. Available (as of 2012 11 05) at
https://www.cs.kent.ac.uk/pubs/2007/2798/content.pdf

[Gluga et al] “Coming to terms with Bloom: an online tutorial for teachers of programming
fundamentals”. Richard Gluga, Judy Kay, Raymond Lister, Sabina Kleitman, Tim Lever. This paper
appeared at the Fourteenth Australasian Computing Education Conference (ACE 2012), Melbourne,
Australia, January-February 2012. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 123. M. de Raadt and A. Carbone, Eds. Available (as of 2012 11 05) at
http://crpit.com/confpapers/CRPITV123Gluga.pdf

[Johnson] “Multi-perspective survey of the relevance of the revised Bloom’s taxonomy to an
introduction to Linux course”. Gregory Johnson, William Armitage, Alessio Gaspar, Naomi Boyer, Cliff
Bennett. This paper appeared at the thirteenth SIGITE annual conference (SIGITE 2012), Calgary, AB.
Available (as of 2012 11 05) at http://sigite2012.sigite.org/?presentation=multi-perspective-survey-of-
the-relevance-of-the-revised-bloom%E2%80%99s-taxonomy-to-an-introduction-to-linux-course

[PSM] “Movers and Transfers in the BC Public Post-Secondary System”. Post‐Secondary Student Mobility
(PSM) Subcommittee of STP . Available (as of 2012 11 05) at
http://www.aved.gov.bc.ca/student_transitions/documents/PSM-Newsletter-2011.pdf

https://helpdesk.bcit.ca/fsr/teach/teaching/ja_learningoutcomes.pdf
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.bccat.ca/pubs/FPMFinalReport.pdf
https://www.cs.kent.ac.uk/pubs/2007/2798/content.pdf
http://crpit.com/confpapers/CRPITV123Gluga.pdf
http://sigite2012.sigite.org/?presentation=multi-perspective-survey-of-the-relevance-of-the-revised-bloom%E2%80%99s-taxonomy-to-an-introduction-to-linux-course
http://sigite2012.sigite.org/?presentation=multi-perspective-survey-of-the-relevance-of-the-revised-bloom%E2%80%99s-taxonomy-to-an-introduction-to-linux-course
http://www.aved.gov.bc.ca/student_transitions/documents/PSM-Newsletter-2011.pdf

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 33

[Zastre] “Final Report: British Columbia Computing Education Committee Flexible Pre-Major Analysis
Report”. Michael Zastre. December 2009. Available (as of 2012 11 05) at
http://www.bccat.ca/pubs/ComputingEducationFPMAnalysis.pdf

http://www.bccat.ca/pubs/ComputingEducationFPMAnalysis.pdf

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 34

Appendices

Each outcome has a code identifying the subject area from which it is derived. These codes are:

• AL – Algorithms and Data Structures
• CA – Computer Architecture
• HW – Hardware
• IP – Introductory Programming
• IM – Information Management
• NW – Networking
• SE – Software Engineering
• WL – Web Learning

For summary outcomes, summarizing several enabling outcomes, the code is followed by a letter. The
letter is a sequence letter, with no importance attached to the order in which that letter was assigned.

The enabling outcomes are identified by the same code, followed by a number.

In the summary outcomes that follow, the outcomes are listed alphabetically. Note that the verb “use”
is not the verb “use” often identified as a suitable verb for Bloom's Application level. It is used here as a
generic verb, to refer to a spectrum of activities coming from a variety of Bloom's levels. “Use”
incorporates “identify”, “create”, “implement”, “analyze”, and “compare and contrast”. Using it in this
way has allowed us to simplify the summary outcomes.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 35

Appendix 1 - Knowledge and Comprehension Summary Outcomes for Computer Science FPM

ALB Define common terms used in
Algorithms and Data Structures

 AL9 AL10 AL23 AL32 AL33 AL34

 AL49 AL50 AL52 AL76 AL100 AL114
 AL121 AL129 AL130 AL155 AL156
CAA Define common terms used in Computer

Architecture
 CA1 CA2 CA17 CA18 CA36 CA37

 CA40 CA47 CA50 CA60 CA61 CA63
 CA64 CA70 CA72 CA75
IPA Define common terms used in

Introductory Programming
 IP14 IP20 IP21 IP25 IP26 IP77

 IP117 IP118 IP127
SEB Define common terms used in Software

Engineering
 SE1 SE2 SE5 SE6 SE13 SE14

 SE17 SE36 SE37 SE53
CAE Describe processors - single, multiple,

parallel, specialized
 CA5 CA26 CA27 CA28 CA29 CA38

 CA41 CA56 CA58 CA59 CA62 CA65
 CA66 CA67 CA73 CA74
CAB Describe the history of computer

architecture
 CA3 CA6 CA7

SEM Discuss issues arising in software
deployment, maintenance and support.

 SE44 SE50 SE51 SE52 SE54

ALT Discuss memory allocation issues AL39 AL40 AL41 AL42 AL43
CAF Explain a system, at a holistic level CA4 CA25 CA38 CA53 CA68 CA71

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 36

 CA76 CA82 CA83 CA84 CA85
CAC Explain basic electronics CA8 CA9 CA10
CAD Explain data representation CA11 CA12 CA13 CA14 CA15 CA16
 CA19 CA20 CA21 CA22 CA23 CA24
CAH Explain interrupts CA38 CA49
SEI Explain software lifecycles and their

phases
 SE44 SE45 SE46 SE47 SE48 SE49

SE72

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 37

Appendix 2 - Other Summary Outcomes for Computer Science FPM

Note that the verb “use” is being used in a generic sense and covers most levels of Bloom's taxonomy, rather than having many more summary
outcomes, one for each level and for each data structure, algorithm, or technique.

ALD Characterize code fragments/algorithms
using time and space complexity, or as
being recursive/iterative

AL12 AL13 AL14 AL20 AL21 AL22

AL24 AL25 AL26 AL27 AL31 AL51

AL60 AL80 AL82 AL85 AL88 AL90

AL91 AL92 AL93 AL94 AL95 AL96

AL97 AL98 AL106 AL112 AL113 AL121

AL122 AL134 AL138 AL144 AL146 AL150

AL151

SEA Complete a team-based project

SEK Construct high-quality software to

realize a design

SE3 SE4 SE8 SE9 SE10 SE28

SE38 SE39 SE49 SE59 SE64 SE72
SEG Create and specify the software design

for a medium-sized software project

SE11 SE12 SE13 SE15 SE16 SE18

SE19 SE20 SE21 SE22 SE23 SE24

SE25 SE26 SE27 SE28 SE29 SE30

SE31 SE47 SE72

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 38

ALA Demonstrate mathematical literacy in
the concepts applicable to Algorithms
and Data Structures

AL1 AL2 AL3 AL4 AL5 AL6

AL7 AL8 AL11 AL15 AL16 AL17

AL18 AL19 AL53 AL54 AL114 AL123

AL124 AL125 AL126 AL127 AL128 AL131

AL132 AL133

SEE Demonstrate the central elements of
team building and team management.
(Software Engineering Management)

SE26 SE35 SE40 SE41 SE42 SE43

SE64
SED Display competence with enabling

technologies for software engineering

SE4 SE7 SE8 SE9 SE32 SE33

SE34 SE38 SE39 SE46 SE75 SE76
SEH Evaluate different designs prepared as

solutions to the same problem.

SE11 SE13 SE15 SE16 SE18 SE19

SE21 SE22 SE23 SE24 SE25 SE26

SE27 SE28 SE29 SE30 SE31 SE47

SE72
ALS Given a problem, identify an

appropriate algorithm and/or data
structure to solve it

 AL47 AL48 AL69 AL70 AL71 AL72

 AL99 AL111 AL118 AL147 AL148 AL149
IPS Perform complexity analysis

IP25 IP78 IP79 IP80 IP81 IP82

IP83 IP84 IP85 IP86 IP92
IPE Perform simple input and output

IP10

SEF Produce a set of software requirements
for a medium-sized software system
(Requirements).

SE55 SE56 SE57 SE58 SE59 SE60

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 39

SE61 SE62 SE63
IPH Read and explain code

IP1 IP2 IP3 IP4 IP5 IP28

IP128
SEC Select, with justification, an appropriate

set of tools to support the development
of a particular software product. (Tools
and Environments)

SE4 SE7 SE8 SE9 SE32 SE33

SE34 SE38 SE39 SE46 SE75 SE76

SE36 SE37

SEJ Select, with justification, the software
development models and process
elements for the development and
maintenance of a particular software
product

SE43 SE44 SE45 SE46 SE47 SE48

SE49 SE72
IPJ Successfully deal with errors

IP28 IP29 IP30 IP31 IP32 IP65

IP67 IP71 IP73 IP74
SEL Test code with unit tests, system tests,

and user tests

SE61 SE65 SE66 SE67 SE68 SE69

SE71 SE72 SE73 SE74 SE75 SE76
ALI Use (binary) trees

AL61 AL66 AL67 AL68 AL79 AL101

AL102 AL103 AL104 AL105 AL110 AL111

AL115 AL116 AL117 AL119 AL120

CAI Use a bus

CA51 CA52 CA53 CA54
IPM Use collections

IP39 IP40 IP41 IP42 IP43 IP44

IP45 IP46 IP47 IP87 IP88 IP89

IP91 IP110

IPD Use conditional structures

IP4 IP10 IP11 IP12 IP13 IP125

IP126

IPV Use dynamic programming

IP93

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 40

ALE Use finite state machines and regular
expressions

AL152 AL153 AL154 AL157 AL158 AL159

AL160
IPN Use generics/templates

IP51 IP52 IP53

ALO Use graphs

AL134 AL135 AL136 AL137 AL138 AL139

AL140 AL141 AL142 AL143 AL144 AL145

AL146
ALK Use hashing

AL59 AL60 AL62 AL66 AL67 AL68

AL71 AL72 AL73 AL74 AL75
ALN Use heaps

AL63 AL65 AL66 AL67 AL68

IPC Use iteration

IP5 IP10 IP13 IP16 IP17
IPK Use language reference materials

IP33 IP34 IP35

ALF Use lists

AL35 AL44 AL55 AL56 AL57
CAG Use memory

CA39 CA38 CA41 CA42 CA43 CA44

CA45 CA46 CA48 CA53 CA54 CA71
IPG Use modelling tools and techniques

(problem solving)

IP15 IP18 IP19 IP66 IP111 IP112

IP113 IP114 IP115 IP27 IP90
ALQ Use O(n log n) sorts

AL90 AL91 AL92 AL93 AL94 AL95

AL96 AL97
ALP Use O(n squared) sorts

AL81 AL82 AL83 AL84 AL85 AL86

AL87 AL88 AL89 AL96 AL97
IPU Use object-oriented programming

IP103 IP104 IP105 IP106 IP107 IP108

ALJ Use ordered trees, e.g., binary search
trees, B trees, B+ trees

AL107 AL108 AL109 AL110 AL111

CAJ Use peripherals

CA57 CA54 CA49
IPF Use pointers and references

IP49 IP50

ALM Use priority queues

AL64 AL65 AL66 AL67 AL68

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 41

IPI Use procedures, functions, methods,
subroutines a.k.a. Top-down design

IP10 IP22 IP23 IP24

ALH Use queues and deques

AL37 AL38 AL46 AL55 AL56
ALC Use recursion

AL77 AL78 AL79 AL80 AL129

IPP Use recursion

IP58 IP59 IP60 IP61 IP67 IP68

IP69 IP70 IP119

ALR Use searching algorithms

AL28 AL29 AL30 AL57 AL58 AL59
IPL Use simple datatypes (primitives)

IP36 IP37 IP38 IP124 IP125

ALG Use stacks

AL36 AL45 AL55 AL56
IPO Use testing, preconditions,

postconditions, assertions

IP54 IP55 IP56 IP57 IP62 IP63

IP64 IP65 IP126
IPB Write and test good code in more than

one programming language

IP3 IP6 IP7 IP8 IP9 IP10

IP48 IP72 IP122 IP123 IP121 IP129

IP116 IP120 IP121 IP130 IP90

IPQ Write event-driven programs

IP72 IP73
IPR Write multi-threaded programs

IP74 IP75

CAK Write programs using assembly
language

CA29 CA30 CA31 CA32 CA33 CA34

CA35

Summary outcome SEA (Complete a team-based project) has no specific enabling outcomes listed. Nonetheless, a student completing this FPM
must have completed a team-based project.

Please note that there is some duplication in this table. In particular, the summary outcome “Use finite state machines” is repeated twice, as is
“Use recursion”. Ed Knorr has suggested more expansive wordings for these duplications:

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 42

“Use finite state machines in writing a program involving states and transitions” for Introductory Programming and “Use finite state machines in
the design of an algorithm involving states and transitions” for Algorithms and Data Structures.

“Use recursion in the design of a non-trivial algorithm” for Algorithms and Data Structures and “Use recursion in the implementation of an
algorithm” for Introductory Programming.

With these clarifications it is clearer that the levels at which students satisfy these outcomes will be lower in Introductory Programming than in
Algorithms and Data Structures.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 43

Appendix 3 - Knowledge and Comprehension Summary Outcomes for Computer Information Systems FPM

ALB Define common terms used in
Algorithms and Data Structures

 AL9 AL10 AL23 AL32 AL33 AL34

 AL49 AL50 AL52 AL76 AL100 AL114

 AL121 AL129 AL130 AL155 AL156

HWA Define common terms used in hardware HW11 HW24

 IMH Define common terms used in
Information Management

 IM1 IM2 IM3 IM4 IM5 IM7

 IM12 IM13 IM14 IM15 IM17 IM18

 IM19 IM43 IM44 IM50 IM55 IM62

IPA Define common terms used in
Introductory Programming

 IP14 IP20 IP21 IP25 IP26 IP77

 IP117 IP118 IP127

NWI Define common terms used in
Networking

NW2 NW21 NW23 NW32 NW33 NW45

NW46 NW47 NW48 NW49 NW55

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 44

SEB Define common terms used in Software
Engineering

 SE1 SE2 SE5 SE6 SE13 SE14

 SE17 SE36 SE37 SE53

WLM Define common terms used in Web
Learning

 WL4 WL5 WL9 WL10 WL13 WL14

 WL15 WL16 WL17 WL18 WL19 WL20

 WL35 WL36 WL48 WL52 WL54 WL59

HWI Describe a motherboard HW49 HW50 HW51 HW52

 IMB Describe different database models and
differentiate between them.

 IM54

IMA Describe organizational needs relating to
data acquisition, use, retention and
disposition.

 IM6 IM7 IM8 IM9 IM10 IM62

 IM63 IM64

HWD Describe primary memory HW8 HW9 HW10 HW39 HW40

 HWC Describe secondary storage HW12 HW20 HW21 HW22 HW23 HW25

 HW26 HW27 HW28 HW29 HW30 HW37

 HW38 HW53 HW60

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 45

HWE Describe the CPU HW6 HW7 HW43 HW45 HW46 HW47

 HW48

NWB Describe the major communication
architectural models.

NW16 NW17 NW18 NW19 NW20

HWB Describe video HW31 HW32 HW33 HW34 HW35 HW36

SEM Discuss issues arising in software
deployment, maintenance and support.

 SE44 SE50 SE51 SE52 SE54

ALT Discuss memory allocation issues AL39 AL40 AL41 AL42 AL43

NWG Explain how a network OS works and be
able to install and configure one.

 NW79 NW80

SEI Explain software lifecycles and their
phases

 SE44 SE45 SE46 SE47 SE48 SE49

 SE72

NWC Identify specific architectural features in
networks.

 NW22 NW24 NW25 NW26 NW27 NW28

 NW29 NW30 NW31

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 46

NWF List a wide variety of data
communication protocols and describe
the advantages and disadvantages of
each.

 NW63 NW64 NW65 NW66 NW67 NW68

 NW69 NW70 NW71 NW72 NW73 NW74

 NW75 NW76 NW77 NW78

IMG Use relational database terminology
correctly

 IM12 IM13 IM14 IM15 IM16 IM17

IM18 IM19 IM21 IM23 IM25 IM27

IM40 IM41 IM42 IM43 IM44 IM50

IM52

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 47

Appendix 4 - Other Summary Outcomes for Computer Information Systems FPM

Note that the verb “use” is being used in a generic sense and covers most levels of Bloom's taxonomy, rather than having many more summary
outcomes, one for each level and for each data structure, algorithm, or technique.

WLC Apply copyright law, ethics and internet
law to a website.

 WL12 WL63 WL75

ALD Characterize code fragments/algorithms
using time and space complexity, or as
being recursive/iterative

 AL12 AL13 AL14 AL20 AL21 AL22

 AL24 AL25 AL26 AL27 AL31 AL51
 AL60 AL80 AL82 AL85 AL88 AL90
 AL91 AL92 AL93 AL94 AL95 AL96
 AL97 AL98 AL106
SEA Complete a team-based project
SEK Construct high-quality software to

realize a design
 SE3 SE4 SE8 SE9 SE10 SE28

 SE38 SE39 SE49 SE59 SE64 SE72
NWD Construct networks ranging from small

LANs to large WANs.

NW34 NW35 NW36 NW37 NW38 NW39

NW40 NW41 NW42 NW43 NW44
WLF Create a dynamic website that

incorporates a scripting language (client-
or server-side).

 WL12 WL64 WL74 WL76 WL77 WL78

 WL79 WL80 WL81 WL82 WL83 WL84
 WL85 WL86 WL87 WL88 WL89 WL90
 WL91 WL92 WL95 WL97 WL93 WL94

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 48

WLD Create a dynamic website that
incorporates a user-friendly design.

 WL33 WL34 WL42 WL43 WL44 WL45

 WL46 WL47 WL49 WL50 WL51 WL53
 WL55 WL56 WL64 WL73 WL74 WL91
 WL100 WL101 WL102
WLG Create a dynamic website that

incorporates generally accepted
standards.

 WL21 WL22 WL23 WL27 WL28 WL29

 WL30 WL45 WL46 WL73 WL74 WL91
 WL92 WL93 WL94
WLH Create a dynamic website that

incorporates web standards.
 WL12 WL73 WL74 WL99

IMC Create a relational data model for a
problem.

 IM16 IM30 IM32 IM34 IM36 IM38

 IM39 IM40 IM41 IM42 IM51 IM54
 IM55 IM56 IM57 IM58 IM60 IM61
WLI Create a secure website that accesses a

database.
 WL12 WL74 WL89 WL91 WL92 WL93

 WL94 WL97 WL99 WL103 WL104
WLE Create a website that incorporates

XHTML/CSS.
 WL12 WL21 WL22 WL23 WL24 WL25

 WL26 WL27 WL28 WL29 WL30 WL31
 WL32 WL33 WL47 WL56 WL57 WL58
 WL74 WL86 WL87 WL88 WL89 WL95
SEG Create and specify the software design

for a medium-sized software project
 SE11 SE12 SE13 SE15 SE16 SE18

 SE19 SE20 SE21 SE22 SE23 SE24
 SE25 SE26 SE27 SE28 SE29 SE30
 SE31 SE47 SE72

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 49

ALA Demonstrate mathematical literacy in
the concepts applicable to Algorithms
and Data Structures

 AL1 AL2 AL3 AL4 AL5 AL6

 AL7 AL8 AL11 AL15 AL16 AL17
 AL18 AL19 AL53 AL54 AL114 AL123
 AL124 AL125 AL126 AL127 AL128 AL131
 AL132 AL133
SEE Demonstrate the central elements of

team building and team management.
(Software Engineering Management)

 SE26 SE35 SE40 SE41 SE42 SE43

 SE64
IMD Design a normalized database. IM27 IM28 IM30 IM36 IM38 IM39
 IM44 IM45 IM46 IM47 IM48 IM49
 IM59
SED Display competence with enabling

technologies for software engineering
 SE4 SE7 SE8 SE9 SE32 SE33

 SE34 SE38 SE39 SE46 SE75 SE76
IMF Embed relational database technology

in a programming or web environment.
 IM20 IM54 IM55 IM56 IM57 IM58

 IM59
SEH Evaluate different designs prepared as

solutions to the same problem.
 SE11 SE13 SE15 SE16 SE18 SE19

 SE21 SE22 SE23 SE24 SE25 SE26
 SE27 SE28 SE29 SE30 SE31 SE47
 SE72
WLL Gather traffic data for use in web

analysis.
 WL63

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 50

ALS Given a problem, identify an
appropriate algorithm and/or data
structure to solve it

 AL47 AL48 AL69 AL70 AL71 AL72

 AL99 AL111 AL118 AL147 AL148 AL149
WLA Given a problem, suggest an internet

infrastructure suitable to solve the
problem and justify your choice.

 WL1 WL2 WL3 WL6 WL7 WL8

 WL11 WL88 WL91 WL92 WL93 WL94
 WL96 WL98 WL102
NWE Identify different network devices, and

describe transmission media and
topologies for combining them into
networks.

NW50 NW51 NW52 NW53 NW54 NW56

NW57 NW58 NW59 NW60 NW61 NW62
HWH Maintain hardware/operating

environment/networking
 HW14 HW15 HW16 HW17 HW18 HW19

 HW42
NWA Manage a network for optimal

performance, and troubleshoot the
network.

 NW1 NW3 NW4 NW5 NW6 NW7

 NW8 NW9 NW10 NW11 NW12 NW13
 NW14 NW15
IMI Normalize relations IM45 IM46 IM47 IM48 IM49
WLK Optimize a website for search engine

access (SEO).

IPS Perform complexity analysis

IP25 IP78 IP79 IP80 IP81 IP82

IP83 IP84 IP85 IP86 IP92

 IPE Perform simple input and output

IP10

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 51

SEF Produce a set of software requirements
for a medium-sized software system
(Requirements).

 SE55 SE56 SE57 SE58 SE59 SE60

 SE61 SE62 SE63
HWG Program at a low level

HW13

 NWH Provide a basic overview of networks, at
the highest level.

NW81

IPH Read and explain code

IP1 IP2 IP3 IP4 IP5 IP28

IP128

 SEC Select, with justification, an appropriate
set of tools to support the development
of a particular software product. (Tools
and Environments)

 SE4 SE7 SE8 SE9 SE32 SE33

 SE34 SE36 SE37 SE38 SE39 SE46
 SE75 SE76
SEJ Select, with justification, the software

development models and process
elements for the development and
maintenance of a particular software
product

 SE43 SE44 SE45 SE46 SE47 SE48

 SE49 SE72
IPJ Successfully deal with errors

IP28 IP29 IP30 IP31 IP32 IP65

IP67 IP71 IP73 IP74
 SEL Test code with unit tests, system tests,

and user tests
 SE61 SE65 SE66 SE67 SE68 SE69

 SE71 SE72 SE73 SE74 SE75 SE76

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 52

WLJ Use an appropriate range of tools to
create a multimedia website.

 WL37 WL38 WL39 WL40 WL41 WL42

 WL45 WL47 WL56 WL57 WL58 WL61

 WL62 WL63 WL65 WL66 WL67 WL68

 WL69 WL70 WL71 WL72 WL73 WL87

 WL99 WL100 WL101

HWF Use and maintain an operating system HW15 HW16 HW17 HW18 HW19 HW45
IPM Use collections IP39 IP40 IP41 IP42 IP43 IP44
 IP45 IP46 IP47 IP87 IP88 IP89
 IP91 IP110
IPD Use conditional structures IP4 IP10 IP11 IP12 IP13 IP125
 IP126
IMJ Use constraints IM50 IM51 IM52 IM53
IPV Use dynamic programming

IP93

 ALE Use finite state machines and regular
expressions

 AL152 AL153 AL154 AL157 AL158 AL159

 AL160
IPN Use generics/templates IP51 IP52 IP53
ALO Use graphs AL134 AL135 AL136 AL137 AL138 AL139
 AL140 AL141 AL142 AL143 AL144 AL145
 AL146
ALK Use hashing AL59 AL60 AL62 AL66 AL67 AL68
 AL71 AL72 AL73 AL74 AL75
ALN Use heaps AL63 AL65 AL66 AL67 AL68
IPC Use iteration

IP5 IP10 IP13 IP16 IP17

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 53

IPK Use language reference materials

IP33 IP34 IP35
 ALF Use lists AL35 AL44 AL55 AL56 AL57

IPG Use modelling tools and techniques
(problem solving)

 IP15 IP18 IP19 IP27 IP66 IP90

 IP111 IP112 IP113 IP114 IP115
ALQ Use O(n log n) sorts AL90 AL91 AL92 AL93 AL94 AL95
 AL96 AL97
ALP Use O(n squared) sorts AL81 AL82 AL83 AL84 AL85 AL86
 AL87 AL88 AL89 AL96 AL97
IPU Use object-oriented programming IP103 IP104 IP105 IP106 IP107 IP108
ALJ Use ordered trees, e.g., binary search

trees, B trees, B+ trees
 AL107 AL108 AL109 AL110 AL111

IPF Use pointers and references

IP49 IP50
 ALM Use priority queues AL64 AL65 AL66 AL67 AL68

IPI Use procedures, functions, methods,
subroutines a.k.a. Top-down design

 IP10 IP22 IP23 IP24

ALH Use queues and deques AL37 AL38 AL46 AL55 AL56
ALC Use recursion AL77 AL78 AL79 AL80 AL129
IPP Use recursion

IP58 IP59 IP60 IP61 IP67 IP68

IP69 IP70 IP119
 ALR Use searching algorithms AL28 AL29 AL30 AL57 AL58 AL59

WLB Use services for communication and to
access internet-based resources.

 WL7 WL8 WL12 WL60 WL61 WL62

 WL66 WL67 WL68 WL69 WL70 WL71
 WL72
IPL Use simple datatypes (primitives)

IP36 IP37 IP38 IP124 IP125

 ALG Use stacks AL36 AL45 AL55 AL56
IPO Use testing, preconditions,

postconditions, assertions
 IP54 IP55 IP56 IP57 IP62 IP63

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 54

 IP64 IP65 IP126
IPB Write and test good code in more than

one programming language
 IP3 IP6 IP7 IP8 IP9 IP10

 IP48 IP72 IP90 IP116 IP120 IP121
 IP122 IP123 IP129 IP130
IPQ Write event-driven programs

IP72 IP73

 IPR Write multi-threaded programs

IP74 IP75
 IME Write syntactically correct and accurate

SQL statements.
 IM11 IM20 IM22 IM24 IM26 IM28

IM29 IM31 IM33 IM35 IM37 IM53

Summary outcome SEA (Complete a team-based project) has no specific enabling outcomes listed. Nonetheless, a student completing this FPM
must have completed a team-based project.

Please note that there is some duplication in this table. In particular, the summary outcome “Use finite state machines” is repeated twice, as is
“Use recursion”. Ed Knorr has suggested more expansive wordings for these duplications:

“Use finite state machines in writing a program involving states and transitions” for Introductory Programming and “Use
finite state machines in the design of an algorithm involving states and transitions” for Algorithms and Data Structures.

“Use recursion in the design of a non-trivial algorithm” for Algorithms and Data Structures and “Use recursion in the
implementation of an algorithm” for Introductory Programming.

With these clarifications it is clearer that the levels at which students satisfy these outcomes will be lower in Introductory Programming than in
Algorithms and Data Structures.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 55

Appendix 5 - The perspective from the registrars

Registrars are not in favour of FPMs.

Here are several perspectives, from the Registrar at Trinity Western University
(http://gvmcmillan.wordpress.com/2010/10/19/can-you-touch-your-toes/), and Registrar Office staff at
UNBC, UVic, and UBC (all excerpted from emails sent to committee members).

Can You Touch Your Toes?

How flexible are you?

Me? I’ve never been able to touch my toes – not since I can ever remember. I blame it on my short
arms, but it might have something to do with too much muscle… er… well, bulk, anyhow… ahem.

But if I can’t be flexible at my waist, I can at least help my university be flexible. Just last week, I
attended a fall meeting of the BC Registrars Association where we discussed a relatively new
development: flexible pre-major agreements. Have you heard of them? BC Council on Admission and
Transfer has some information on their transfer innovations section of their website.

Currently, the only flexible pre-major agreement that has been signed and put into circulation is English,
and my own institution (TWU) is one of the signatories on the agreement. Of course, agreements and
programs like this raise all sorts of registrarial questions. The Registrars around the table at our meeting
last week raised a number of good questions:

• Should we place this information on transcripts?
• Should we admit students based on this information?
• Should we transfer courses and credits based on this information?

We all said “NO!”

Now before you get your shorts in a knot and accuse us of being terribly inflexible, let me explain. We
are a group committed to being service agents and we often have student interests ahead of institution
interests. So we like ideas like flexible pre-majors. The problems come when we create rules and
procedures around these ideas – those rules and procedures often restrict students and institutions in
ways that are not helpful and end up making us less flexible.

In this particular case, flexible pre-majors turn out to be rather inflexible. Students who want to
complete a flexible pre-major must take a carefully prescribed set of courses at their home university or
college and the only thing that is flexible is that they have a number of other schools (agreement
signatories) that they can transfer to. If we registrars decided that the flexible pre-major would be listed

http://gvmcmillan.wordpress.com/2010/10/19/can-you-touch-your-toes/
http://www.bccat.bc.ca/articulation/resources/handbook/innovations/
http://www.bccat.bc.ca/articulation/resources/handbook/innovations/

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 56

on transcripts, then that most often means these agreements would have to go through a whole other
level of program approval at our respective Senates/Councils (read: slow, more regulations, less flex). If
we decided that they would be a basis for admission, we’re talking more approvals at Senate/Councils
(read: slow, more red tape, less flex). All of the above would require more administration, more cost,
less service, less flexibility. For example, if we admit students on the basis of a flexible pre-major, what
happens if they change their minds? Would we ever not admit a student because the program is
full? Ugh, I don’t like where this is going at all – not very flexible!

Instead, we said do whatever you want, but we’ll just transfer courses as usual, we’ll admit students as
usual, and we’ll let the English department determine if the students meet the flexible pre-major
requirements. After all, they created the program – they should be the ones to determine how it works.
And if students want to do their own thing – that’s up to them. Far be it from us to regulate their lives
that much.

Now pardon me while I go back to trying… to… touch… my… toes…(just a minute, maybe if I bob up and
down a bit)…ok, maybe if I loosen my belt a notch…(hang on, I can do this)… maybe if I bend my knees
and curl my toes up… YAY! I did it!

You might say I cheated: “You can’t do that!” I’ll just say I have flexible toes and flexible rules

Comments from Other Registrars

From UNBC:

…

Thank you for the info from BCCAT. I recognize the intent of the flexible pre-majors; however, in
discussion with the Admissions staff, it's not something that we've treated differently than other
transfers. The main hurdles being that many transfer institutions do not identify their students as being
in "Flexible Pre-Major" programs, so we have no way of knowing they're enroled [sic] in a Flexible Pre-
Major and therefore admit students as we would any other BC Transfer Student.

We also don't admit directly to the majority of our programs, so the flexible pre-major would need to be
addressed at the Advising level upon declaration of major (unless we determine transfer based on an
"Intended" program of study, which creates other issues if a student changes their mind).

Having said all of this, we could provide you with a grid of 100 & 200 Level Computer Science
requirements and how courses from sending institutions across the province are received by UNBC.
From what I can see, there is similar grid already in place for Mathematics flexible pre-majors.

To sum up, if an institution transcripts their student as being in a Flexible Pre-Major we would admit
them to UNBC as a BC College Transfer student, assign appropriate transfer credit (as per the BC
Transfer Guide), and ensure that the credit is applied appropriately at the time the student declares
their major, as per any signed pre-major agreement.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 57

From UVic:

(1) At present here at UVic we don't know if a transferring student has completed an FPM because -- of
course! -- it doesn't appear on the transcript. Our Associate Registrar (who replied to my queries) is
considering requesting that the question be asked on the online application for admission (i.e., self-
declaration).

(2) Since the FPM doesn't appear on a transcript, the student is handled like any other student applying
for admission. They would have enough credits to be considered for transfer and would have to meet
the current GPA cutoff for transfer students.

My understanding from Kathleen Boland (AR here at UVic) is that FPMs have been discussed amongst
registrars at the provincial level. That's how the BCCAT working group on FPMs learned that there is
currently little desire amongst registrars to add FPMs as a transcript annotation.

From UBC:

…The Admission Advisors that I spoke to had never seen [an FPM designation on a transcript]. Even if
there was one on the transcript, it would be ignored as it is information that does not factor into the
admission process. It would not be noted or recorded anywhere on the student's record. As we admit
to degree program only and not to a major, this information does not currently have a function for us. I
am assuming that students who have completed an FPM would still have completed courses that
individually would transfer over as transfer credit. In which case, I am again assuming that when they
eventually do apply to the major, someone in the department must review their file and somehow
determine that they have completed the FPM. A question that came to mind is what would happen if a
course in the FPM did not transfer over. However maybe that does not matter as much as we are used
to as the more important piece of information is that the student has completed the FPM and therefore
met the specific requirements here at UBC.

…[W]e would not (also, we would not be able to) give any preference to FPM students. Admission
criteria are general to the degree program overall and must be consistently applied so we would not be
able to give preference to a specific group of students unless there was a formal arrangement, such as a
degree partnership or bridging program. Any kind of arrangement where different admission criteria
are to be applied would have to go through the formal Senate processes leading to publication in the
academic calendar.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 58

Appendix 6 – Enabling Outcomes – Algorithms and Data Structures

AL1 Graph the following functions: c, lg x, x, x lg x, x^2, 2^x.
AL2 Given a problem statement, describe a solution using sets, functions, and

mathematical symbols.
AL3 Use mathematical notation and constructs to describe a problem.
AL4 Apply sets and functions to solving computing problems; for example: hashing,

complexity analysis, and counting.
AL5 Translate general problems into rigorous problem statements using set terminology

and notation.
AL6 Define the term "mapping".
AL7 Define a mapping between sets.
AL8 Prove one-to-one and onto for finite and infinite sets.
AL9 Define "time complexity".
AL10 Define "space complexity".
AL11 Classify the different functions in terms of their complexity; for example: c (constant),

lg x (logarithmic), x (linear), x lg x, x^2, 2^x (exponential).
AL12 Given a code fragment, identify its time and/or space complexity.
AL13 Given a code fragment, derive its time and/or space complexity.
AL14 Compare and contrast code fragments based on their time and/or space complexity.
AL15 Explain asymptotic behaviour.
AL16 Define "Big-O".
AL17 Define "Big-Omega".
AL18 Define "Big-Theta".
AL19 Compare and contrast Big-O, Big-Omega, and Big-Theta notations.
AL20 Use complexity to estimate the time taken to execute code fragments.
AL21 List the program operations which affect efficiency/complexity (e.g., number of

instructions, steps, function calls, comparisons, swaps).
AL22 Given a code fragment, identify the dominant program operations.
AL23 Define input size for a given algorithm.
AL24 Determine the effect (in terms of performance) that input size has on an algorithm.
AL25 Give examples of practical limits of algorithms considering complexity.
AL26 Explain the differences between best-, worst-, and average-case complexity analysis.
AL27 Describe why best-case complexity analysis is rarely relevant and how worst-case

complexity analysis may never be encountered in practice.
AL28 Given a list and a target, explain how the sequential search attempts to find the

target.
AL29 Recall the Big-O value for a sequential search.
AL30 Derive the Big-O value for a sequential search.
AL31 Given an algorithm, compute its worst-case asymptotic complexity.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 59

AL32 Define the term "abstraction".
AL33 Define the term "implementation".
AL34 Differentiate between an abstraction and an implementation.
AL35 Describe list data structures along with their public-interface specifications.
AL36 Describe stack data structures along with their public-interface specifications.
AL37 Describe queue data structures along with their public-interface specifications.
AL38 Describe deque/dequeue data structures along with their public-interface

specifications.
AL39 Demonstrate how explicit dynamic memory management is handled in [an imperative

language] (e.g., allocation, deallocation or garbage collection, memory heap, run-time
stack).

AL40 Demonstrate how implicit dynamic memory management is handled in [an imperative
language] (e.g., allocation, deallocation or garbage collection, memory heap, run-time
stack).

AL41 Use pointers/references in [an imperative language].
AL42 Describe the advantages and disadvantages of using pointers/references.
AL43 Describe the risks of using pointers/references (e.g., dangling pointers, memory leaks).
AL44 Implement list data structures using both index-based and reference/pointer

techniques.
AL45 Implement stack data structures using both index-based and reference/pointer

techniques.
AL46 Implement queue data structures using both index-based and reference/pointer

techniques.
AL47 Provide examples of problems that can be solved using stacks, queues, and deques.
AL48 Given a problem, solve it using an appropriate choice of stacks, queues, and deques.
AL49 Define the term "iteration".
AL50 Define the term "recursion".
AL51 Recognize algorithms as being iterative or recursive.
AL52 Define the term "loop invariant".
AL53 Prove that a loop invariant holds for a given code fragment.
AL54 Describe the relationship between recursion and induction (e.g., take a recursive code

fragment and express it mathematically in order to prove its correctness inductively).
AL55 Implement iterative and recursive versions of operations on list, stack and queue data

structures.
AL56 Compare and contrast iterative and recursive versions of operations on list, stack and

queue data structures.
AL57 Given a sorted list and a target, explain how binary search attempts to find the target.
AL58 Provide an appropriate Big-O estimate for binary search.
AL59 Given a hash table, hash function and target, explain how the hash search attempts to

find the target.
AL60 Provide an appropriate Big-O estimate for a hash search.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 60

AL61 Describe tree data structures along with their public-interface specifications.
AL62 Describe hash-table data structures along with their public-interface specifications.
AL63 Describe heap data structures along with their public-interface specifications.
AL64 Describe priority-queue data structures along with their public-interface

specifications.
AL65 Implement and manipulate a heap using an index-based technique.
AL66 Implement tree, hash-table, heaps and priority-queue data structures using both

index-based and reference/pointer techniques.
AL67 Implement iterative and recursive versions of operations on tree, hash-table, heaps

and priority-queue data structures.
AL68 Compare and contrast iterative and recursive versions of operations on tree, hash-

tables, heaps and priority-queue data structures.
AL69 Given a problem, describe how (and if) it could benefit from an appropriate choice of

priority queues, heaps, and trees.
AL70 Provide examples of problems that can benefit from an appropriate choice of priority

queues, heaps, and trees.
AL71 Provide examples of the types of problems that can benefit from a hash data

structure.
AL72 Compare and contrast open addressing and chaining for hash data structures.
AL73 Evaluate collision resolution policies for hash data structures.
AL74 Describe how hashing can degenerate from O(1) expected complexity to O(n).
AL75 Identify the types of search problems that do not benefit from hashing (e.g., range

searching) and explain why.
AL76 Define the term "tail recursion".
AL77 Describe the benefits of recursion.
AL78 Describe the benefits of tail recursion.
AL79 Draw a recursion tree and relate its depth to a) the number of recursive calls and b)

the size of the runtime stack.
AL80 Indicate whether or not a given recursive code fragment terminates.
AL81 Given an input list and a comparison function, sort the list using bubble sort.
AL82 Provide an appropriate Big-O estimate for bubble sort.
AL83 Implement bubble sort.
AL84 Given an input list and a comparison function, sort the list using selection sort.
AL85 Provide an appropriate Big-O estimate for selection sort.
AL86 Implement selection sort.
AL87 Given an input list and a comparison function, sort the list using insertion sort.
AL88 Provide an appropriate Big-O estimate for insertion sort.
AL89 Implement insertion sort.
AL90 Given an input list and a comparison function, sort the list using merge sort.
AL91 Provide an appropriate Big-O estimate for merge sort.
AL92 Implement merge sort.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 61

AL93 Given an input list and a comparison function, sort the list using quicksort.
AL94 Provide an appropriate Big-O estimate for quicksort.
AL95 Implement the quicksort algorithm.
AL96 Compare and contrast the space requirements for different sorting algorithms.
AL97 Compare and contrast the time complexity for sorting algorithms.
AL98 State differences in performance for large datasets versus small datasets on various

sorting algorithms.
AL99 For a given scenario, choose an appropriate sorting algorithm and justify your choice.
AL100 Define the term "tree".
AL101 Define and/or describe a binary tree.
AL102 Apply basic tree definitions to classification problems.
AL103 Explain why a binary tree is useful.
AL104 Present an algorithm to find the height of a binary tree.
AL105 Discuss tree traversal algorithms - InOrder, PostOrder, PreOrder, LevelOrder
AL106 Discuss the Big-O values of InOrder, PostOrder, PreOrder, and LevelOrder traversal

algorithms.
AL107 Explain why a binary search tree is useful in CS.
AL108 Present common binary search tree algorithms such as search for data, adding data,

deleting data.
AL109 Discuss the Big-O value of common binary-search tree algorithms (search for data,

adding data, deleting data).
AL110 Describe the properties of binary trees, binary search trees, and more general trees;

and implement iterative and recursive algorithms for navigating them in [an
imperative language].

AL111 Compare and contrast ordered versus unordered trees in terms of complexity and
scope of application.

AL112 Categorize an algorithm into one of the common complexity classes (e.g., constant,
logarithmic, linear, quadratic, etc.).

AL113 Given two or more algorithms, rank them in terms of their time and space complexity.
AL114 Compare and contrast [the concepts of] space and time complexity.
AL115 Describe the structure, navigation and complexity of an order m B+ tree.
AL116 Insert and delete elements from a B+ tree.
AL117 Explain the relationship among the order of a B+ tree, the number of nodes, and the

minimum and maximum capacities of internal and external nodes.
AL118 Give examples of the types of problems that B+ trees can solve efficiently.
AL119 Compare and contrast B+ trees and hash data structures.
AL120 Explain why B+ trees are preferred dynamic data structures in relational database

systems.
AL121 Discuss the trade-offs in algorithm performance with respect to space and time

complexity. E.g., Compare and contrast the space requirements for a linked list (single,
double) versus an array-based implementation.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 62

AL122 Given a [program fragment], write a formula which computes the number of steps
executed as a function of the size of the input (N).

AL123 Take a loop code fragment and express it mathematically in order to prove its
correctness inductively (specifically describing that the induction is on the iteration
variable).

AL124 In simpler cases, determine the loop invariant.
AL125 Apply counting principles to determine the number of arrangements or orderings of

discrete objects, with or without repetition, and given various constraints.
AL126 Use appropriate mathematical constructs to express a counting problem (e.g.,

counting passwords with various restrictions placed on the characters within).
AL127 Identify problems that can be expressed and solved as a combination of smaller sub-

problems. When necessary, use decision trees to model more complex counting
problems.

AL128 Solve problems using combinatorial arguments and algebraic proofs.
AL129 State the relationship among recursion, Pascal's Triangle, and Pascal's Identity.
AL130 Define the term "binomial distribution" and identify applications in which binomial

distributions arise.
AL131 Model and solve appropriate problems using binomial distribution.
AL132 Apply basic probability theory to problem solving, and identify the parallels between

probability and counting.
AL133 Define various forms of the pigeonhole principle; recognize and solve the specific

types of counting and hashing problems to which they apply.
AL134 Discuss the BigO of spanning-tree algorithms.
AL135 Perform breadth-first and depth-first searches in graphs.
AL136 Explain why graph traversals are more complicated than tree traversals.
AL137 Discuss Prim's and Kruskal's minimal spanning-tree algorithms.
AL138 Discuss the Big-O of minimal spanning-tree algorithms.
AL139 Describe the properties and possible applications of various kinds of graphs (e.g.,

simple, multigraph, bipartite, complete), and the relationships among vertices, edges,
and degrees

AL140 Prove basic theorems about simple graphs (e.g., handshaking theorem).
AL141 Explain the computer representation of graphs.
AL142 Convert between adjacency matrices / lists and their corresponding graphs.
AL143 Determine whether a given graph is a subgraph of another.
AL144 Discuss the complexity of the Travelling Salesman problem
AL145 Explain Dijkstra's Algorithm for the Shortest Path in a graph
AL146 Discuss the Big-O of Dijkstra's algorithm
AL147 Apply object oriented and modular design techniques to an application problem to

design a software solution.
AL148 Given a problem, select the most appropriate data structure (lists, stacks, queues,

trees, hash tables, heaps, priority queues) for its solution.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 63

AL149 Implement an application design, including an implementation an appropriate data
structure (lists, stacks, queues, trees, hash tables, heaps, priority queues).

AL150 Analyze [imperative-language] programs and functions to determine their algorithmic
complexity.

AL151 Given a code fragment, trace its operation by hand.
AL152 Discuss the concept of finite state machines.
AL153 Discuss the concept of a deterministic finite automaton.
AL154 Explain context-free grammars.
AL155 Define the term "finite state machine".
AL156 Define the term "regular expression".
AL157 Given a problem which can be solved by using a regular expression, create the regular

expression.
AL158 Design a deterministic FSM to accept a simple regular expression.
AL159 Explain how some problems have no algorithmic solution.
AL160 Provide examples that illustrate the concept of uncomputability.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 64

Appendix 7 – Enabling Outcomes – Computer Architecture

CA1 Define the term “computer system architecture”.
CA2 Define the term “computer architecture”.
CA3 Describe the progression of computer architecture from vacuum tubes to VLSI.
CA4 List and describe the fundamental building blocks of a computer system.
CA5 List and describe the fundamental building blocks of a computer processor.
CA6 For each of the fundamental computer-system building blocks, explain its role in

the historical development of computers.
CA7 For each of the fundamental computer-processor building blocks, explain its role

in the historical development of computers.
CA8 Use mathematical expressions to describe the functions of simple combinational

circuits.
CA9 Use mathematical expressions to describe the functions of simple sequential

circuits.
CA10 Design a simple circuit using the fundamental building blocks.
CA11 Justify the different formats used to represent numerical data (e.g., floating

point, integer).
CA12 Enumerate/compare and contrast the different formats used to represent

numbers in a processor.
CA13 Explain how integers are stored in sign-magnitude representation.
CA14 Explain how integers are stored in twos-complement representation.
CA15 Trace the numeric operations involved in performing add and subtract on twos

complement numbers.
CA16 Convert among binary, octal, decimal and hexadecimal number formats.
CA17 Define the term “accuracy”.
CA18 Define the term “precision”.
CA19 Discuss how fixed-length number representations affect accuracy and precision.
CA20 Discuss the differences in the internal representations of numeric vs. non-

numeric data (with respect to a specific programming environment).
CA21 Describe the internal representation of characters.
CA22 Describe the internal representation of strings.
CA23 Describe the internal representation of records.
CA24 Describe the internal representation of arrays.
CA25 Explain the organization of the classical von Neumann machine and its major

functional units.
CA26 Explain the fetch-decode-execute-update cycle involved in instruction

processing.
CA27 Compare and contrast how instructions are represented at both the machine

level and in the context of a symbolic assembler.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 65

CA28 Compare and contrast different instruction formats, such as addresses per
instruction and variable length vs. fixed-length formats.

CA29 Trace simple assembly-language program segments and their effect on registers,
memory, and the program counter.

CA30 Write simple assembly language program segments to meet provided
specifications.

CA31 Demonstrate how fundamental high-level programming constructs are
implemented at the machine-language level.

CA32 Explain how subroutine calls are handled at the assembly level.
CA33 Explain the role of a stack in a subroutine call (i.e., local variables, save registers,

return address, etc.)
CA34 Trace the effect of a subroutine call on registers, memory, and the program

counter.
CA35 Trace the effect of a subroutine return on registers, memory, and the program

counter.
CA36 Define the term “interrupt”.
CA37 Describe the use of interrupts and with I/O operations.
CA38 Explain the relationship between interrupts and I/O operations.
CA39 Trace the effect of an interrupt call on registers, memory, and the program

counter.
CA40 Compare and contrast the main types of memory technology.
CA41 Define the term “memory latency”.
CA42 Explain the effect of memory latency on instruction execution time.
CA43 Describe the memory hierarchy (registers, caches, main memory, flash memory,

magnetic disk, network storage devices, cloud devices, etc.)
CA44 Explain how the use of a memory hierarchy could reduce effective memory

latency.
CA45 Describe the motivation for memory management.
CA46 Describe the principles of memory management.
CA47 Describe the role played by a hardware cache in the memory hierarchy.
CA48 Define the term “virtual memory”.
CA49 Compare and contrast virtual memory with physical memory.
CA50 Explain the workings of a simple memory management system (e.g., address

translation, memory allocation for a program).
CA51 Explain how interrupts & interrupt service routines co-operate to implement I/O

control and data transfers.
CA52 Define the term “bus”.
CA53 Identify various types of buses in a computer system.
CA54 Describe the role played by the various system buses.
CA55 Trace the path taken by data accessed from a magnetic disk drive to main

memory.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 66

CA56 Describe the role played by software components involved in the transfer of
data to and from a disk drive.

CA57 Compare the common network configurations.
CA58 Identify hardware interfaces and other hardware extensions suitable for

multimedia support.
CA59 Describe the advantages and limitations of RAID architectures (e.g., latency,

reliability).
CA60 Describe the datapath within a non-pipelined microprocessor architecture.
CA61 Compare and contrast alternative implementations of datapaths.
CA62 Define what is meant by “control point” and “control signal” within a non-

pipelined microprocessor architecture.
CA63 Discuss the concept of control points and the generation of control signals using

hardwired or microprogrammed implementations.
CA64 Define the term “parallelism”, in general terms.
CA65 Define the term “instruction-level parallelism”.
CA66 Identify when and where major hazards occur in a pipeline.
CA67 Describe how pipelining achieves instruction-level parallelism.
CA68 Describe the concept of parallel processing beyond the classical von Neumann

model.
CA69 Compare and contrast alternative architectures such as SIMD, MIMD (e.g., GPUs,

customized devices).
CA70 Compare and contrast interconnection networks and characterize their different

approaches.
CA71 Define the term “multiprocessing”.
CA72 Discuss the special concerns that multiprocessing systems present with respect

to memory management and describe how these are addressed (e.g., memory
consistency, cache coherency, effect on system software, NUMA, etc.).

CA73 Define the term “multithreading”.
CA74 Describe how multithreading can achieve performance improvement.
CA75 Explain the factors that can prevent the performance advantages multithreading

can offer.
CA76 Define the term “scalability” in the context of computer-system performance

(e.g., memory, disk space, processors, etc.).
CA77 Discuss the hardware-resource constraints that limit scalability.
CA78 Compare and contrast LANs and WANs.
CA79 Describe the physical organization of a network (e.g., the Internet).
CA80 Discuss the software architecture issues involved in the design/implementation

of a layered network protocol.
CA81 Explain how architectures differ in network and distributed systems.
CA82 Discuss the software architecture and performance issues related to network-

based vs. local computing/applications.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 67

CA83 Enumerate performance metrics.
CA84 Describe several performance benchmarks and what they measure.
CA85 Compare and contrast alternate performance benchmarks.
CA86 Analyze the claims made in performance reports (e.g., magazine articles, web

pages).

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 68

Appendix 8 – Enabling Outcomes – Hardware

HW1 Identify and categorize different types of computers, e.g., mini, micro,
laptop, smartphone, etc.

HW2 Identify the components of computers and peripherals.
HW3 Describe the functions and roles of computer components and

peripherals.
HW4 Explain how the computer components are connected.
HW5 Explain how the computer components communicate to accomplish

different tasks.
HW6 Describe the internal structure of the Central Processing Unit, including

multicore processors.
HW7 Describe the operation of the Central Processing Unit in terms of

instruction execution.
HW8 Explain the hierarchy of memory (e.g., disks, caches, RAM, registers).
HW9 Explain the operation of the hierarchy of memory in terms of program

execution.
HW10 Describe the different types of memory (e.g., RAM, ROM, BIOS, video

RAM).
HW11 Define the term “virtual memory”.
HW12 Explain how virtual memory functions.
HW13 Explain how machine language provides the foundation for all

programming languages.
HW14 Install and test basic computer hardware and peripherals.
HW15 Install, configure, and test an operating system.
HW16 Install and test device drivers.
HW17 Perform routine OS, firmware and device driver maintenance.
HW18 Troubleshoot basic computer hardware, OS and device driver problems,

demonstrating basic problem solving methodologies.
HW19 Set up and configure a computer for networking connectivity.
HW20 Format, partition and maintain a disk.
HW21 Describe physical disk structure, e.g., sectors, tracks, sides, spindle, etc.
HW22 Explain how factors such as seek time, latency, track density, and RPM,

influence disk performance.
HW23 Describe the various methods for encoding data on to a disk.
HW24 Define the term “RAID”.
HW25 Describe the standard levels of RAID technology.
HW26 Select the proper RAID level for a specific computing requirement.
HW27 Configure and implement a RAID system according to a specific

requirement.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 69

HW28 Identify and explain the purpose of the basic hardware and software
necessary with respect to connecting the PC to a network.

HW29 Use appropriate methods to backup and restore system settings.
HW30 Use appropriate methods to backup and restore data.
HW31 Explain the video adapter functions (e.g., chip sets and graphics cards).
HW32 List the key features and functions of a video card.
HW33 Describe how video displays (monitors) work.
HW34 List the key features of a video display (monitor).
HW35 Connect one or more video displays to a computer.
HW36 Describe the work flow of rendering a video image.
HW37 Describe how data is stored to and retrieved from optical discs.
HW38 Describe the different types of solid state memory technologies.
HW39 Describe the different types of random access memories (RAM).
HW40 Compare and contrast solid state drives and hard disks.
HW41 Describe how an audio system works in a personal computer.
HW42 Install and configure an operating system.
HW43 Describe significant technologies that improved CPU performance (e.g.,

multicore, pipeline).
HW44 Propose a hardware configuration for a specific computing requirement.
HW45 Describe the fetch, increment, and execute cycle.
HW46 Describe how instructions and data are fetched from memory into the

CPU.
HW47 Describe the Von Neumann architecture.
HW48 Describe how interrupts and the stack work.
HW49 Identify and explain the use of different ports and connectors on a

computer.
HW50 Identify various components on a motherboard, e.g., northbridge and

southbridge.
HW51 Describe how the CPU communicates with other devices on the

motherboard.
HW52 Describe the various form factors.
HW53 Contrast the performance of different drive interface standards, such as

SCSI, SATA, etc.
HW54 Compare and contrast the hardware differences between enterprise,

personal, and mobile computing devices.
HW55 Describe how different hardware interface devices work and interact

with mice, keyboards, game consoles, etc.
HW56 Describe how touchscreen devices work.
HW57 Describe how computer hardware interfaces influence software

interface design.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 70

HW58 Describe the purpose and function of mobile hardware components,
including antennae, GPS, accelerometers, Bluetooth, infrared, cameras,
SIM cards, etc.

HW59 Compare and contrast the difference in the functional capabilities of
laptops, notepads, smartphones, e-readers, and other mobile devices.

HW60 Describe different methods for structuring files on a hard disk.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 71

Appendix 9 – Enabling Outcomes – Information Management

IM1 Define the terms information, information management, metadata, data,
database, database management system, metadata, and data mining.

IM2 Compare and contrast metadata, data and information.
IM3 Describe how data, information, and databases are used in organizations.
IM4 Describe how data storage and retrieval has changed over time.
IM5 Compare and contrast the database approach to traditional file

processing.
IM6 Describe how the Internet and the demand for information from users

outside the organization (customers and suppliers) impacts data handling
and processing.

IM7 Define the terms data quality, accuracy and timeliness, and explain how
their absence will impact organizations.

IM8 Describe various methods for data collection, such as automated data
collection, input forms, data readers, etc.

IM9 Describe basic issues of data retention, including the need for retention,
types of media, privacy, security, and legal issues.

IM10 Explain why data backup is important and how organizations use backup
and recovery systems.

IM11 Describe the purpose of Structured Query Language (SQL).
IM12 Define the term “relation”.
IM13 Define the term “relational database”.
IM14 Define the term “table”.
IM15 Define the term “attribute”.
IM16 List and describe attribute types.
IM17 Describe the purpose and use of a SELECT statement.
IM18 Describe the purpose and use of a WHERE clause.
IM19 Describe the purpose and use of an ORDER BY clause.
IM20 Write and test SQL queries using SELECT, FROM, WHERE, and ORDER BY.
IM21 Describe logical operators (AND, OR, NOT).
IM22 Write and test SQL statements using logical operators.
IM23 Describe set operators (UNION, DISTINCT, LIKE, and BETWEEN).
IM24 Write and test SQL statements using set operators.
IM25 Describe the purpose and use of aggregate functions using GROUP BY

and GROUP BY HAVING.
IM26 Write and test SQL statements using aggregate functions with GROUP BY

and GROUP BY HAVING.
IM27 Describe the purpose and use of sub-queries, views, and joins.
IM28 Write and test SQL statements using use sub-queries, views, and joins.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 72

IM29 Format output using headers, footers, totals, and subtotals.
IM30 Describe the purpose and use of the CREATE TABLE command.
IM31 Write and test SQL statements using CREATE TABLE.
IM32 Describe the purpose and use of the CREATE VIEW command.
IM33 Write and test SQL statements using CREATE VIEW.
IM34 Describe the purpose and use of the SELECT AS command.
IM35 Write and test SQL statements to create tables and views using SELECT

AS.
IM36 Describe the purpose and use of INSERT, UPDATE and DELETE.
IM37 Write and test SQL statements using INSERT, UPDATE and DELETE.
IM38 Describe the purpose and use of query by example.
IM39 Write and test a query using query by example.
IM40 Describe the features of the relational model including relations, tuples,

attributes, domains and operators.
IM41 Describe the purpose and use of select, project, union, intersection, set

difference, cross-product, and natural join relational operations.
IM42 Demonstrate select, project, union, intersection, set difference, cross-

product, and natural join relational operations using simple example
relations provided.

IM43 Define the terms key, primary key, and foreign key.
IM44 Define the term “functional dependency”.
IM45 Explain the relationship between functional dependencies and keys and

give examples.
IM46 Explain how having normal form relations reduces or eliminates attribute

redundancy and update/delete anomalies.
IM47 Normalize a set of relations to third normal form.
IM48 Normalize a set of relations to Boyce-Codd normal form.
IM49 Normalize a set of relations to fourth normal form.
IM50 Define and explain the need for referential integrity.
IM51 Explain the primary key requirements for referential integrity.
IM52 Describe the purpose and use of constraints.
IM53 Write and test user-defined integrity constraints.
IM54 Describe the purpose and use of Entity Relationship and UML data

modelling diagrams.
IM55 Define the term “cardinality”.
IM56 Use cardinality notation in an Entity Relationship or UML diagram.
IM57 Given an Entity Relationship or UML diagram, interpret the diagram.
IM58 For a given scenario, create Entity Relationship and UML data modelling

diagrams.
IM59 For a given scenario, design a normalized relational database.
IM60 Describe the relationship between a logical model and a physical model.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 73

IM61 Describe the use of CASE tools in data modelling.
IM62 Describe the purpose and use of a data warehouse.
IM63 Compare and contrast data administration and database administration.
IM64 Describe issues in database security.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 74

Appendix 10 – Enabling Outcomes – Introductory Programming

IP1 Given a code fragment, describe its purpose in plain English.
IP2 Given a code fragment, trace its execution.
IP3 Adapt an existing code fragment to change its behaviour.
IP4 Modify conditional structures in a short program.
IP5 Modify iterative structures in a short program.
IP6 Write well-structured, well-documented, well-commented readable code.
IP7 Describe the role of documentation and comments.
IP8 Use language-appropriate idioms.
IP9 Write meaningful, well-structured external documentation.
IP10 Design, implement, test, and remove errors from a program that uses each of

the following fundamental programming constructs: basic computation,
simple I/O, basic conditional and iterative structures, and functions.

IP11 Describe the syntax and semantics of conditional structures available in [a
language].

IP12 Use conditional structures available in [a language].
IP13 Choose appropriate conditional and/or iterative constructs for a given

programming task, and justify your choice.
IP14 Define the term “pseudocode”.
IP15 Use pseudocode and/or diagrams to describe the steps involved in solving

simple problems.
IP16 Describe the syntax and semantics of iteration structures available in a

language.
IP17 Use iterative structures available in a language.
IP18 Apply decomposition techniques to break a program into smaller pieces

(where each piece has a specific purpose or responsibility).
IP19 Explain the role of pseudocode and diagramming in decomposing problems.
IP20 Define the term “formal parameter”.
IP21 Define the term “actual parameter”.
IP22 Given a code fragment, identify formal and actual parameters of a function.
IP23 Describe the role of formal and actual parameters of a function.
IP24 Identify function.
IP25 List various desirable properties of an algorithm.
IP26 Define the term “algorithm”.
IP27 Given a simple problem, create an algorithm to solve it.
IP28 Trace the execution of a program (e.g., desk checking).
IP29 Describe and use strategies for removing syntax errors.
IP30 Describe and use strategies for removing logic errors.
IP31 Describe and use strategies for removing runtime errors.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 75

IP32 Interpret error messages (compiler, run-time, etc.) and identify their causes.
IP33 Use appropriate sources to learn about the programming environment.
IP34 Apply appropriate sources to aid in the building of programs.
IP35 Explore language features using authoritative language documentation.
IP36 Discuss the representation and use of primitive data types.
IP37 Discuss the representation and use of built-in data structures (e.g., strings,

arrays, files).
IP38 Describe how to allocate, manipulate, and use strings.
IP39 Describe how to allocate, manipulate and use arrays.
IP40 Describe how to allocate, manipulate, and use records.
IP41 Describe how to allocate, manipulate and use lists, stacks, and queues.
IP42 Describe how to allocate, manipulate, and use trees.
IP43 Describe how to allocate, manipulate, and use graphs.
IP44 Describe how to allocate, manipulate, and use hash tables.
IP45 Implement user-defined data structures in a high-level language.
IP46 Compare alternative implementations of data structures with respect to

performance, both time and space.
IP47 Compare and contrast dynamic and static data structure implementations.
IP48 Choose an appropriate data structure for modelling a given problem.
IP49 Use pointers/references to implement user-defined data structures.
IP50 Implement user-defined data structures containing pointers/references.
IP51 Use existing generics/templates to solve a given problem.
IP52 Write a generic function to generalize the solution to a given problem.
IP53 Demonstrate familiarity with contents of industry-standard libraries.
IP54 Create a comprehensive suite of unit tests for a piece of software.
IP55 Critique an existing suite of tests for a piece of software.
IP56 Write appropriate pre- and post-conditions for methods or functions.
IP57 Write appropriate assertions for code fragments.
IP58 Describe the concept of recursion and give examples of its use.
IP59 Given a recursively-defined problem, identify its base case(s) and general

case(s).
IP60 Compare and contrast iterative and recursive solutions for elementary

problems such as factorial.
IP61 Compare and contrast mathematical induction and recursion.
IP62 Formulate loop invariants for simple loops.
IP63 Demonstrate code correctness given a loop invariant.
IP64 Demonstrate loop termination.
IP65 Demonstrate correct handling of boundary conditions.
IP66 Describe the divide-and-conquer approach.
IP67 Implement, test, and remove errors from simple recursive functions and

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 76

procedures.
IP68 Describe how recursion can be implemented using a stack.
IP69 Discuss problems for which backtracking is an appropriate solution.
IP70 Determine when a recursive solution is appropriate for a problem.
IP71 Develop code that responds to exception conditions raised during execution.
IP72 Explain the differences between event-driven programming and command-

line programming.
IP73 Design, code, test and remove errors from simple event-driven programs that

respond to user events.
IP74 Design, code, test and remove errors from simple multi-threaded programs.
IP75 Determine when a multi-threaded solution is appropriate for a problem.
IP76 Explain the use of Big-O, Big-Omega, and Big-Theta notation to describe the

behaviour of functions.
IP77 Define the term “time complexity”.
IP78 Define the term “space complexity”.
IP79 Use Big-O, Big-Omega, and Big-Theta notation to give asymptotic upper,

lower, and tight bounds on time and space complexity of algorithms.
IP80 Determine the time and space complexity of simple algorithms.
IP81 Relate the complexity class of an algorithm to its scalability.
IP82 Describe the kinds of operations we can measure in evaluating the

performance of an algorithm.
IP83 Rank algorithms by rate of growth.
IP84 Compare and contrast best-, worst- and average-case behaviours.
IP85 Implement a greedy algorithm to solve an appropriate problem.
IP86 Implement the most common quadratic and O (N log N) sorting algorithms.
IP87 Design and implement an appropriate hashing function for an application.
IP88 Design and implement a collision-resolution algorithm for a hash table.
IP89 Discuss the computational efficiency of the principal algorithms for sorting,

searching and hashing.
IP90 Discuss factors other than computational efficiency that influence the choice

of algorithms, such as program development time, maintainability, and the
use of application-specific patterns in the input data.

IP91 Solve problems using fundamental graph algorithms.
IP92 Justify the choice of algorithms for a given problem with reference to

algorithm time and space properties.
IP93 Design and implement a dynamic programming solution to a problem.
IP94 –
IP102

These enabling outcomes were moved to Algorithms and Data Structures but
subsequent enabling outcomes were not renumbered.

IP103 Explain the philosophy of object-oriented design and the concepts of
encapsulation, abstraction, inheritance and polymorphism.

IP104 Design, implement, test and debug programs in an object-oriented

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 77

programming language.
IP105 Describe how the class mechanism supports encapsulation and information

hiding.
IP106 Design, implement, and test the implementation of is-a relationships among

objects using a class hierarchy and inheritance.
IP107 Compare and contrast the notions of overloading and overriding methods in

an object-oriented language.
IP108 Explain the relationship between the static structure of the class and the

dynamic structure of the instances of the class.
IP109 Define the term “iterator”.
IP110 Use iterators to access the elements of a container/collection.
IP111 Interpret UML class diagrams.
IP112 Given a problem statement, apply a standard technique to identify the classes

involved.
IP113 Create a UML class diagram that associates classes identified in a problem.
IP114 Create a UML sequence diagram representing object interaction.
IP115 Interpret UML interaction diagrams.
IP116 Compare and contrast compiled and interpreted execution models, outlining

the relative merits of each.
IP117 Describe the phases of program translation from source code to executable

code and the files produced by these phases.
IP118 Explain the differences between machine-dependent and machine-

independent translation and where these differences are evident in the
translation process.

IP119 Translate a simple iterative construct, such as summing an array or computing
a factorial using a loop, into a recursive functional (non-side effecting)
construct.

IP120 Describe the strengths and weaknesses of various programming languages.
IP121 Given a problem, indicate an appropriate programming language in which to

implement a solution.
IP122 List some good programming standards and practices.
IP123 Use programming standards and practices to create good code.
IP124 Describe Boolean values and operations.
IP125 Given a Boolean expression, evaluate it.
IP126 Given a problem involving conditions, implement and test appropriate

Boolean expression(s).
IP127 Define the term “scope”.
IP128 Given a code fragment, identify the scope of the variables involved.
IP129 Write correct non-trivial programs in two or more programming languages.
IP130 Map language-specific terms in one programming language to their

equivalents in other languages.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 78

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 79

Appendix 11 – Enabling Outcomes – Networking

NW1 Manage networked accounts on a server.
NW2 Define the term “network performance”.
NW3 Measure network performance.
NW4 List and explain the factors that constrain network performance.
NW5 List and explain various techniques to enhance network performance.
NW6 Given a network configuration, recommend an appropriate technique to improve

network performance.
NW7 Protect servers from data loss and describe how to recover from data loss.
NW8 Given a network configuration, recommend and implement a server backup and

recovery plan.
NW9 Discuss the costs and benefits of network management and planning.
NW10 Develop standards, policies, procedures and documentation for a network.
NW11 Describe the main challenges faced in an organization using networks.
NW12 Explain a systematic approach for troubleshooting a network.
NW13 Implement a systematic approach for troubleshooting a network.
NW14 Troubleshoot a network following a structured approach.
NW15 Describe the types of specialized equipment and other resources available for

troubleshooting.
NW16 Explain the OSI reference model.
NW17 Explain the OSI reference model's layers and their relationships to networking

hardware and software.
NW18 Discuss the layered architecture of protocols, and describe common protocols and

their implementation.
NW19 Describe, compare, and contrast the major network architectures, including

TCP/IP.
NW20 Outline the limitations, advantages, and disadvantages of each standard or

architecture.
NW21 Define the term “network services”.
NW22 Compare and contrast centralized and client/server computing.
NW23 Define the term “client/server networks”.
 Define the term “peer-to-peer”. Recorded as WL10.
NW24 Discuss the basics of Web-based computing environments.
NW25 Describe the basic concepts associated with wide area networks (WANs).
NW26 Describe how to use the Internet for a private connection using VPNs.
NW27 Describe how to implement a VPN.
NW28 List the pros and cons of VPN.
NW29 Describe virtual LANs.
NW30 Describe how to implement a virtual LAN.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 80

NW31 List the pros and cons of using VLANs.
NW32 Define the term “physical network topology”.
NW33 Define the term “logical network topology”.
NW34 List and describe the basic steps required for network operating system

installation.
NW35 Install and configure network applications.
NW36 Create a network security plan.
NW37 Describe WAN protocols, and software and hardware technologies to build WANs.
NW38 Design a small local area network.
NW39 Build a small local area network.
NW40 Maintain a small local area network.
NW41 Describe the process of setting up peer-to-peer networks.
NW42 Set up a peer-to-peer network.
NW43 Describe Frame Relay.
NW44 List commands to monitor Frame Relay operation in the router.
NW45 Compare and contrast Local, Metropolitan and Wide Area Networks.
NW46 Define the following basic networking terms: Client, Peer, Server, the Network

Medium, Network Protocol, Network Software, Network Service.
NW47 Describe the basic Network Types: Peer-to-Peer, Server-Based, Personal Area

Networks (PANs), Hybrid Networks. Describe Storage-Area Networks (SANs),
Server Hardware Requirements, Specialized Servers.

NW48 Define technical terms related to cabling, including attenuation, crosstalk,
shielding, and plenum.

NW49 Define the following terms: hub, and switch.
NW50 Describe the basic types of Hubs: Active Hubs, Passive Hubs, Hybrid Hubs.
NW51 Identify major types of network cabling.
NW52 Identify major types of wireless network technologies.
NW53 Given a particular LAN/WAN environment, identify and justify the appropriate

cabling and connectors.
NW54 Explain how network adapters prepare data for transmission, accept incoming

network traffic, and control how networked communications flow.
NW55 Define the following terms: repeater, bridge, router, brouter, gateway, and

switch.
NW56 Explain how larger networks may be implemented using devices such as

repeaters, bridges, routers, brouters, gateways, and switches.
NW57 Configure routers to connect different types of LANs and WANs using LAN and

WAN protocols.
NW58 Describe the advantages and methods of network segmentation.
NW59 Name and describe two switching methods.
NW60 Describe full- and half-duplex Ethernet operation.
NW61 Describe the features and benefits of Fast Ethernet.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 81

NW62 Describe the characteristics of various transmission media.
NW63 Compare and contrast base band and broadband transmission technologies.
NW64 Describe rudimentary signaling technologies for mobile computing.
NW65 Explain the IEEE 802 networking model and related standards.
NW66 Describe the function and structure of packets in a network, and analyze them.
NW67 Explain the function of protocols in a network (e.g., TCP/IP).
NW68 Describe various channel access methods, compare and contrast them.
NW69 Discuss the different types of carriers used for long-haul network

communications.
NW70 Identify virtual LANs, LAN switching, Fast Ethernets, Frame Relay, ISDN

networking.
NW71 Identify the uses, benefits, and drawbacks of advanced WAN technologies such as

ATM, FOOI, SONET, and SMDS.
NW72 Describe network congestion problems in Ethernet networks.
NW73 Distinguish between cut-through and store-and-forward LAN switching.
NW74 Describe the operation of the Spanning Tree Protocol and its benefits.
NW75 Compare and contrast the following WAN services: LAPB, Frame Relay,

ISDN/LAPD, HDLC, PPP, and DDR.
NW76 Recognize key Frame Relay terms and features.
NW77 Identify PPP operations to encapsulate WAN data on routers.
NW78 Explain and identify key protocol information given samples of captured packets.
NW79 Explain the role of driver software in network adapters.
NW80 Explain the operation fundamentals of network operating systems.
NW81 Provide a basic overview of networks, at the highest level.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 82

Appendix 12 – Enabling Outcomes – Software Engineering

SE1 Define the term “software engineering”.
SE2 Outline the history of software engineering.
SE3 Decompose implementation work into units for parallel implementation.
SE4 Compare and contrast several implementation philosophies (e.g., Big bang,

top down, bottom up).
SE5 Define the term “code quality” and describe how it is measured.
SE6 Define the term “productivity” and describe how it is measured.
SE7 Describe and use techniques to improve code quality and productivity by

using software tools.
SE8 Describe various aspects of software configuration management.
SE9 Justify the use of software-configuration management (SCM) tools.
SE10 Use an issue tracking system to identify and eliminate problems.
SE11 Design and apply code standards.
SE12 List and describe several good design principles.
SE13 Explain and apply good design principles.
SE14 Define the term “design pattern”.
SE15 Explain and apply common design patterns.
SE16 Select and apply appropriate design patterns in the construction of a

software application.
SE17 Define the term “software architecture”.
SE18 Recognize basic software architectures.
SE19 Design and specify a software system's architecture.
SE20 Design and specify the class-level structure of a software system (OO

paradigm).
SE21 Design and specify the procedure-level structure of a software system

(procedural paradigm).
SE22 Identify the relationships between classes.
SE23 Extend the analysis classes to represent the design use cases and identify

specific object instances.
SE24 Add/modify relationships between classes and objects to further extend the

design.
SE25 Represent analysis and design models using use case, sequence,

collaboration, class, and state machine diagrams.
SE26 Design a project with the UML.
SE27 Design a project in a group setting.
SE28 Describe the qualities of a good software system and explain their value.
SE29 Discuss the properties of good software design including the nature and the

role of associated documentation.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 83

SE30 Evaluate the quality of alternative software designs based on key design
principles and concepts.

SE31 Measure the size of a project.
SE32 Use feedback from implementation to refine design.
SE33 Analyze and evaluate a set of tools in a given area of software development

(e.g., management, modelling, or testing).
SE34 Use a range of software tools in support of the development of a software

product of medium size.
SE35 Use tools to manage and support a software development team such as

software configuration management tools (version control repositories),
project management tool (task schedulers, meetings) and communication
tools (email, shared websites, instant messaging).

SE36 Define the term “code repository”.
SE37 Define the term “version control system”.
SE38 Coordinate implementation efforts using a code repository.
SE39 List the typical operations provided by a software configuration management

(SCM) tool.
SE40 Organize the solution to a medium-sized non-trivial problem involving a

group of programmers.
SE41 Apply good project management practices to a software project, including

risk analysis, task/resource scheduling, human resource management, and
continuous progress monitoring.

SE42 Identify and resolve common team-related issues such as communication
problems and decision making.

SE43 Review and evaluate team member performance.
SE44 For each of several software project scenarios, describe the project's place in

the software lifecycle, identify the particular tasks that should be performed
next, and identify metrics appropriate to those tasks.

SE45 Identify the principal issues associated with software evolution and explain
their impact on the software lifecycle.

SE46 Explain the risks of skipping or reducing a phase of the lifecycle.
SE47 Recognize the types of tools that are used in each phase of the software

lifecycle.
SE48 Compare and contrast the traditional waterfall development model to the

incremental model, the agile model, the object-oriented model, and other
common models.

SE49 Apply a software lifecycle model of Object-Oriented paradigm, and its
methodology to a multi-member software development project.

SE50 Create good user documentation.
SE51 Discuss the challenges of maintaining software.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 84

SE52 Discuss the challenges of maintaining legacy systems and the need for
reverse engineering.

SE53 Define the term “refactoring”.
SE54 Identify weaknesses in a given simple design, and highlight how they can be

removed through refactoring.
SE55 Argue for the need for requirements.
SE56 Describe and use techniques for eliciting, analyzing, specifying, and verifying

functional and non-functional requirements.
SE57 Describe several types of requirements.
SE58 Elicit requirements from a client.
SE59 Given a narrative, develop an appropriate use case.
SE60 Refine a use case to serve as foundation for design.
SE61 Identify classes based on use cases and narratives.
SE62 Identify the characteristics of good and bad (untestable, ambiguous,

unethical) requirements.
SE63 Given a requirement, identify whether it is good or bad, supporting your

answer.
SE64 Explain the typical difficulties of technical communication.
SE65 Construct a software test plan.
SE66 Create, evaluate and justify, and implement a test plan for a medium-size

code segment.
SE67 Distinguish between the different types and levels of testing (unit,

integration, systems and acceptance) for medium-size software products.
SE68 Create test cases.
SE69 As part of a team activity, undertake an inspection of a medium-size code

segment.
SE70 Explain basic testing terminology.
SE71 Recognize common testing frameworks employed in the industry.
SE72 Describe and use techniques for verifying and validating all artifacts created

during the process.
SE73 Describe and use techniques for testing the resulting system through unit

testing, integration testing, system testing, etc.
SE74 Describe and use techniques for implementing user acceptance testing.
SE75 Describe the role that tools can play in the validation of software.
SE76 Write and debug test scripts.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 85

Appendix 13 – Enabling Outcomes – Web Learning

WL1 Describe several major hardware and software components, including how
they are related to the Internet infrastructure.

WL2 Describe the roles and importance of TCP/IP in the Internet.
WL3 Describe how the DNS system works.
WL4 Define the term “domain”.
WL5 Define the term “top-level domain”.
WL6 List several of the different top-level domains and, for each, describe their

intended audience(s).
WL7 List several application level protocols (e.g., POP, SMTP, FTP, HTTP).
WL8 Provide examples of how and where application level protocols get used on

the Internet.
WL9 Define the term “client/server architecture”.
WL10 Define the term “peer-to-peer architecture”.
WL11 Compare and contrast client/server and peer-to-peer architectures.
WL12 List and explain several of the considerations when a company hosts a web

site (e.g., amount of disk space, monthly transfer limits, etc.).
WL13 Define the term “HTML/XHTML header element”.
WL14 Define the term “HTML/XHTML paragraph element”.
WL15 Define the term “logical formatting”.
WL16 Define the term “list”.
WL17 Define the term “table”.
WL18 Define the term “HTML/XHTML image element”.
WL19 Define the term “HTML/XHTML hyperlink element”.
WL20 Define the term “HTML/XHTML character entity”.
WL21 Create web pages that conform to W3C standards using headings,

paragraphs, logical formatting, lists, tables, images, hyperlinks and character
entities.

WL22 Validate and correct a web page.
WL23 Validate and correct a style sheet.
WL24 Differentiate between an absolute and a relative URL or URI and construct

the correct one for a given situation.
WL25 Use the appropriate markup to create sections for styling (for example, div

and span in XHTML).
WL26 Create tag, pseudo-class, class and id selectors using basic properties (e.g.,

font, color, text-decoration, text-align, background, list-style-type, etc.).
WL27 Describe Cascading Style Sheets (CSS); that is, what is their purpose
WL28 Describe how Cascading Style Sheets (CSS) are created.
WL29 Create properly-formed CSS style rules.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 86

WL30 Place properly formed CSS rules in an external or internal style sheet.
WL31 Analyze a set of CSS rules for the cascade effect and render the resultant

styling to a webpage.
WL32 Describe the CSS box model.
WL33 Use the CSS box model and positioning properties to create a web page with

multiple columns, a masthead, and a footer.
WL34 Compare and contrast various web page layouts: liquid, fixed, and

jello/elastic.
WL35 Define the term “raster format”.
WL36 Define the term “vector format”.
WL37 Describe the characteristics of pictures that are best stored in raster format.
WL38 Describe the characteristics of pictures that are best stored in vector formats.
WL39 Compare and contrast raster and vector formats, including typical filename

extensions, colour depth, amount of transparency permitted and type of
compression used.

WL40 Describe how resolution and pixel depth (8-bit indexed, 24-bit RBG and 8-bit
grayscale) affect the appearance of a raster image and its stored size on disk.

WL41 Use an image manipulation program to perform the following actions:
scaling, rotating, cropping, down sampling, repairing an image by erasing an
object, removing the background from a raster image, converting between
various file formats, creating a composite using layers and layer masks, and
creating simple GIF animations using layers.

WL42 Describe the RGB, HSV and CMYK colour models.
WL43 Select colours based on the colour harmonies: monochromatic,

complementary, analogous, and triadic.
WL44 Describe the five basic web page design principles (contrast, repetition,

alignment, proximity, communicability).
WL45 Design a website using the five basic webpage design principles.
WL46 Critique a website using the five basic webpage design principles.
WL47 Design a small website for a mobile device taking into account the limited

screen resolution, colour depth, bandwidth, and reduced keyboard.
WL48 Define the term “site organizational scheme”.
WL49 Describe the characteristics of exact and ambiguous site organizational

schemes, along with their sub-schemes, giving examples of where they are
used appropriately.

WL50 Select an appropriate organizational scheme for a website.
WL51 Compare two websites according to their organizational scheme.
WL52 Define the term “site organizational structure”.
WL53 Describe various kinds of site organizational structures.
WL54 Define the term “navigation element”.
WL55 On a website, identify the primary and secondary navigation elements (e.g.,

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 87

breadcrumb trails, site maps, and site index).
WL56 Create a website with primary and secondary navigation elements.
WL57 Use a web authoring tool (e.g., Dreamweaver) to maintain a website.
WL58 Create a website using a web authoring tool (e.g., Dreamweaver).
WL59 Define the term “search engine”.
WL60 Query a search engine using AND, OR, NOT, and exact phrases.
WL61 List several search engine optimization techniques to improve a website’s

ranking in the search results.
WL62 Use several search engine optimization techniques to improve a website’s

ranking in the search results.
WL63 Analyze a website’s log file to determine when visitors arrive, from where,

and which pages they view.
WL64 Describe how cookies can be used in a website to customize the appearance

for return visitors.
WL65 Use a tool (e.g., Flash) to create a simple two dimensional animation using

multiple layers and object tweening.
WL66 Describe the fundamental characteristics and uses of e-commerce.
WL67 Describe the fundamental characteristics and uses of blogs, wikis, and RSS

feeds.
WL68 Describe the fundamental characteristics and uses of content management

systems.
WL69 Integrate social network sites (e.g., Twitter, Facebook, YouTube, etc.) into a

website.
WL70 Integrate a blog into a website.
WL71 Integrate a wiki into a website.
WL72 Integrate an RSS feed into a website.
WL73 Use a content management system to create a website.
WL74 Create a secure e-commerce web site using an appropriate existing payment

processing service.
WL75 Explain the legal issues of copyright, trademark, privacy, hate literature, libel,

and jurisdiction as they apply to web content.
WL76 Given the requirements of a problem, use a scripting language to write

programs to solve it.
WL77 Insert a scripting language program into a web page.
WL78 Use built-in operators, variables, and literals to create expressions in a

scripting language.
WL79 Use scalar, array and hash variables in a script as necessary.
WL80 Use [the scripting language's] string manipulation features.
WL81 Describe the following constructs – selection, repetition,

subprograms/functions.
WL82 Use selection structures, including if and switch.

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 88

WL83 Use repetition structures, including while, for, do.
WL84 Create a function to solve a problem.
WL85 Distinguish between void returning and value returning functions.
WL86 Use markup form tags (e.g., buttons, text, textarea, radio, checkbox, select)

to collect user input.
WL87 Describe the Document Object Model (DOM) and properties and methods of

form elements.
WL88 Use events and event handlers to create an interactive web page.
WL89 Describe the process of validating and submitting form data.
WL90 Save form data on the server side.
WL91 Explain the role of a CGI script in creating interactive web sites.
WL92 Compare and contrast client-side versus server-side scripting.
WL93 Write a server-side script to create a web page in response to a request,

collect data from a web page visitor or send an email.
WL94 Write a client-side script to create a web page to perform actions such as

form data validation.
WL95 Use server-side includes to dynamically create a web page.
WL96 Describe some of the major historical events in the evolution of the Internet

and the World Wide Web.
WL97 Apply the appropriate operating system security and permissions to allow a

script to execute.
WL98 Describe some of the encryption techniques used on the Internet.
WL99 Use SSL tools to create a secure connection.
WL100 Create a video or audio podcast.
WL101 Include video or audio content in a web page.
WL102 Describe the process of selecting and registering a domain name.
WL103 Describe the process of creating a valid SSL certificate.
WL104 Use authentication tools (e.g., CAPTCHA) to discourage robotic web access.
WL105 Use a validator to validate the structure of a web page.
WL106 Craft an appropriate set of keywords and description for a web page.
WL107 Craft hyperlinks and content with the search engine ranking in mind.
WL108 Define the term “Search Engine Results Page”.
WL109 Differentiate between Organic and Paid Search Engine Results Page listings
WL110 Outline a strategy for increasing the likelihood of a higher ranking on a Search

Engine Results Page

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 89

Appendix 14 – Computer Science Flexible Pre-Major Agreement

The following pages provide a template institutions may use to indicate their acceptance of the
Computer Science Flexible Pre-Major.

Computer Science Flexible Pre-Major Agreement

1. This Computer Science Flexible Pre-Major Agreement is intended to clarify and simplify transfer

arrangements for students wishing to transfer between BC post-secondary institutions in order to take a
major in Computer Science, the transfer occurring typically after the second year of study. It was
developed to address challenges students experience in transferring to different institutions after second
year.

2. Rather than prescribing specific courses, as is done in most other FPMs, the Computer Science FPM was
created by first determining a collection of learning outcomes transferring students should have and then
indicating which of an institution’s courses provide those outcomes.

3. Under this agreement, sending institutions may continue to offer distinctive courses appropriate to their
individual programs without restricting student access to various degree completion options. Students will
find it easier to plan their programs and select their courses since the Computer Science Flexible Pre-
Major subject areas are clearly identified. Students’ possibilities for transfer will be maximized since the
Computer Science Flexible Pre-Major is accepted by a number of participating institutions.

4. Students are advised that the Computer Science Flexible Pre-Major does not guarantee acceptance into
Computer Science major programs, as acceptance depends upon students meeting both the entrance
requirements of the receiving institution and any program-specific requirements specified by the receiving
institution.

5. The Computer Science Flexible Pre-Major does not excuse students from non-discipline-specific
requirements of programs at the receiving institution, such as English, humanities, discrete mathematics,
or science credits. These must still be met prior to graduation with a Computer Science major, and
students are strongly encouraged to examine the total program requirements of receiving institutions
prior to applying for transfer.

6. None of the courses constituting the requirements for the Computer Science Flexible Pre-Major may
substitute for upper-level requirements at the receiving institution.

7. A student who completes the basket of courses described in the Computer Science Flexible Pre-Major is
deemed to have met the first- and second-year core computer science requirements of the receiving
institution’s Computer Science Major.

8. This Computer Science Flexible Pre-Major agreement supplements and does not supersede existing
processes for establishing transfer credits, and indeed, other non-program courses will be assessed on a
course-bycourse basis in accordance with the BC Transfer Guide.

Institution:

Institution representative:

Name:

Title:

Email:

Signature:

Date:

Computer Science Flexible Pre-Major:2012 November 30 Page 1 of 2

The Computer Science Flexible Pre-Major requires that students take:

• Based on the learning outcomes identified as important for transferring students, at least one course

in each of the required areas: algorithms and data structures, computer architecture, introductory
programming, and software engineering.

• In total, a Computer Science Flexible Pre-Major consists of four or more three-credit (or the
equivalent) courses. While not part of the FPM, students should also take a discrete mathematics
course.

Computer Science Flexible Pre-Major: 2012 November 30 Page 2 of 2

Final Report: Computing Education Flexible Pre-Major Implementation Report 2012 November 30
 Revised 2013 June 4

Page 92

Appendix 15 – Computer Information Systems Flexible Pre-Major Agreement

The following pages provide a template institutions may use to indicate their acceptance of the
Computer Information Systems Flexible Pre-Major.

Computer Information Systems Flexible Pre-Major Agreement

1. This Computer Information Systems Flexible Pre-Major Agreement is intended to clarify and simplify

transfer arrangements for students wishing to transfer between BC post-secondary institutions in order to
take a major in Computer Information Systems, the transfer occurring typically after the second year of
study. It was developed to address challenges students experience in transferring to different institutions
after second year.

2. Rather than prescribing specific courses, as is done in most other FPMs, the Computer Information Systems
FPM was created by first determining a collection of learning outcomes transferring students should have
and then indicating which of an institution’s courses provide those outcomes.

3. Under this agreement, sending institutions may continue to offer distinctive courses appropriate to their
individual programs without restricting student access to various degree completion options. Students will
find it easier to plan their programs and select their courses since the Computer Information Systems
Flexible Pre-Major subject areas are clearly identified. Students’ possibilities for transfer will be maximized
since the Computer Information Systems Flexible Pre-Major is accepted by a number of participating
institutions.

4. Students are advised that the Computer Information Systems Flexible Pre-Major does not guarantee
acceptance into Computer Information Systems major programs, as acceptance depends upon students
meeting both the entrance requirements of the receiving institution and any program-specific requirements
specified by the receiving institution.

5. The Computer Information Systems Flexible Pre-Major does not excuse students from non-discipline-
specific requirements of programs at the receiving institution, such as English, humanities, discrete
mathematics, or Information Systems credits. These must still be met prior to graduation with a Computer
Information Systems major, and students are strongly encouraged to examine the total program
requirements of receiving institutions prior to applying for transfer.

6. None of the courses constituting the requirements for the Computer Information Systems Flexible Pre-
Major may substitute for upper-level requirements at the receiving institution.

7. A student who completes the basket of courses described in the Computer Information Systems Flexible
Pre-Major is deemed to have met the first- and second-year core computer science requirements of the
receiving institution’s Computer Information Systems Major.

8. This Computer Information Systems Flexible Pre-Major agreement supplements and does not supersede
existing processes for establishing transfer credits, and indeed, other non-program courses will be assessed
on a course-bycourse basis in accordance with the BC Transfer Guide.

Institution:

Institution representative:

Name:

Title:

Email:

Signature:

Date:

Computer Information Systems Flexible Pre-Major:2012 November 30 Page 1 of 2

The Computer Information Systems Flexible Pre-Major requires that students take:

• Based on the learning outcomes identified as important for transferring students, at least one course

in each of the required areas: algorithms and data structures, hardware, information management
(database), introductory programming, networking, software engineering, and web learning.

• In total, a Computer Information Systems Flexible Pre-Major consists of seven or more three-credit
(or the equivalent) courses.

Computer Information Systems Flexible Pre-Major: 2012 November 30 Page 2 of 2

	Final Report
	British Columbia Computing Education Committee
	Flexible Pre-Major Implementation Project
	2012 November 30
	Revised 2013 June 4
	Project Lead: Rick Gee

	Table of Contents
	Executive Summary
	Background and Objectives
	Background
	Definition of an FPM
	Project Objectives
	Project Team

	Problem Statement
	Process
	Plan of Meetings
	Sources and Resources
	Revising the outcomes
	Combining the outcomes
	Enabling outcomes and summary outcomes
	Duplication of outcomes
	Not all outcomes have the same weight
	Translating outcomes into courses or vice versa
	Notation
	Baskets

	BCCAT approval, Institutional signoff and beyond
	BCCAT approval
	Institutional signoff
	Questions about signoff
	Communications
	Forms
	Ongoing evaluation

	Recommendations
	Acknowledgements
	References
	Appendices
	Appendix 1 - Knowledge and Comprehension Summary Outcomes for Computer Science FPM
	Appendix 2 - Other Summary Outcomes for Computer Science FPM
	Appendix 3 - Knowledge and Comprehension Summary Outcomes for Computer Information Systems FPM
	Appendix 4 - Other Summary Outcomes for Computer Information Systems FPM
	Appendix 5 - The perspective from the registrars
	Can You Touch Your Toes?
	Comments from Other Registrars

	Appendix 6 – Enabling Outcomes – Algorithms and Data Structures
	Appendix 7 – Enabling Outcomes – Computer Architecture
	Appendix 8 – Enabling Outcomes – Hardware
	Appendix 9 – Enabling Outcomes – Information Management
	Appendix 10 – Enabling Outcomes – Introductory Programming
	Appendix 11 – Enabling Outcomes – Networking
	Appendix 12 – Enabling Outcomes – Software Engineering
	Appendix 13 – Enabling Outcomes – Web Learning
	Appendix 14 – Computer Science Flexible Pre-Major Agreement
	Appendix 15 – Computer Information Systems Flexible Pre-Major Agreement

