Final Report
British Columbia Computing Education Committee

Flexible Pre-Major Analysis Project

December 31, 2009

Project Lead: Dr. Michael Zastre

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 1

Table of Contents

Background and ODJECHIVESccc.uiiiiiiiriiiiiiieeiieeee ettt s 4
1. The BCCEC ..ottt sttt ettt st sttt 4
2. PrOJECE OTIZINS ceouuvieiiiieiiiie ittt ettt ettt e ettt e st e e st e e s bt e e sabeeesabeeenans 5
3. Discipline transfer Patternscooveeeiiieeiiieeniie ettt 6
4. PrOJECt ODJECHIVES ...eeiuvtiiiiiieiiieeeitee ettt ettt et e et e ettt e et e e et e e sbteesabteesabeeesaseeesaneesnns 6
S PIOJECE TRAIMN ...eeniiiiiiiie ittt ettt e st e e st e e abee e 7
Problem STatemeNntcooiiiiiiiiiiieeeee e 8
1. Traditional Articulation, and Rationale for an FPMccccccvvviveiiiveeeeieieiieieeeeeennns 8
2. Learning Outcomes as part of the Analysis Project.........ccccceecverieiniieiienenneennens 10
3. A word of caution about Learning OUtCOMEScccueeeriieeriierriieeniieeniieenieeenieeenns 11
PIOCESS .ttt ettt es 13
1. Plan Of MEETINZScooviiiiiiiieiie ettt ettt et e e st e et eesaree s 13
2. Sources and RESOUICES.........coouiiriiiiiiiiiiieeieeeeee ettt s 13
FANAINES .ottt ettt e st e st e st e st e st e e saneeeans 15
1. Learning outcomes (LOs): Enabling vs. Summary...........cccoccveeviieiniieiniienniieennneen. 15
2. Possible mechanisms for administration of the FPMcccccoiiiiiiiiniiiininn, 15
3. Several other OPen QUESTIONSeevruiiiiiiiiiiiiieeriie ettt e et esiee e s e sbee e 16
ReCOMMENAAIONSc..eeiiiiiiiiiiieeiteie ettt sttt e sanees 18
Some additional COMIMENEScc.eiiuiiriiiriiirieeeerte ettt ees 20
ACKNOWIEAZEMENLSeeiuiiieiiiieiiie ettt ettt ettt e s e et e e sabee s 21
Reference WOTKS......co.uiiiiiiiiieee e 22
APPEIIAICES ...ttt ettt et e et e st e e st e e et e e st e e e bt eenabeesanes 23
Final Report: Computing Education Flexible Pre-Major Analysis Report December 31,2009

Page 2

Executive Summary

From February 2008 to December 2009, the British Columbia Computing Education
Committee (BCCEC) undertook a Flexible Pre-Major (FPM) Analysis project. The
project subcommittee consisted of a representative sample of institutions in BC which
offer Information Technology and Communication (ITC) programs (i.e., Computer
Science, and Information Systems / Information Technology).

A distinguishing feature of this project was our decision to use learning outcomes as the
mechanism for describing a Flexible Pre-Major. This is different from some other
approaches by different articulation committees. Our decision was that approaches to the
delivery of CS and IS/IT programs can differ significantly between institutions. While
students emerging after two years from CS programs at different institutions may have
achieved the same learning outcomes, the courses themselves do not necessarily easily
articulate using the traditional course-by-course transfer model (i.e., 80% overlap in
topics between courses may not always exist).

The project committee oversaw the preparation of eight lists of learning outcomes. Four
of these are for Computer Science (CS) topic areas, and four are for Information Systems
/ Information Technology (IS/IT) topics areas. Nearly all lists consist of “summary
learning outcomes” and “enabling learning outcomes”. Our intent is that an institution
will compare their own program’s learning outcomes with the FPM’s summary learning
outcomes, and a suitable degree of matching of outcomes would indicate the institution is
eligible to participate in the BCCEC FPM.

At its Fall 2009 meeting, members of the BCCEC considered the work of the project
committee and determined that a CS FPM and an IS/IT FPM are indeed feasible. The
project committee therefore recommends the following be considered by participants in
the subsequent implementation project, amongst other issues and requirements normally
part of a Flexible Pre-Major Implementation project:

* Revise the existing lists of Learning Outcomes (see the Appendix for these lists)
* Obtain institutional consensus on wording of FPM participation.

* Identify other benefits of work from our FPM studies and share it with others
interested in this work.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 3

Background and Objectives
1. The BCCEC

The British Columbia Computing Education Committee (BCCEC) is comprised of
representatives from Teaching-intensive universities, Research-intensive universities,
Community Colleges and Institutes who deliver either Computer Science (CS) programs
or Information Systems / Information Technology (IS/IT) programs or both. While the
main purpose of committee meetings is to identify and address issues involving
articulation and course transfer amongst participating institutions, much time is also
devoted to discussions of curricular changes and innovations which are driven to some
extent by the steady pace of change in the Information Technology and Communication
(ITC) industry.

These changes are many and various: new computer programming languages; new
hardware platforms (mobile, embedded, server, desktop); the emergence of ubiquitous
networking (wireless, high-speed networks, secure networks); etc. This has not affected
all parts of CS and IS/IT curricula, specifically not those with a more mathematical
emphasis (i.e. discrete mathematics, algorithmic theory). However, a significant
proportion of the curriculum does require constant change, and given an opportunity to
implement such changes there is often a desire by an institution’s educators to introduce
pedagogical innovations that address the learning needs of its students.

Another reason for introducing innovations in course design and delivery has been the
“dot-com bust”. After experiencing huge increases in student enrolment in the late 1990s
resulting in part from the “dot-com boom”, student enrolment numbers dropped
dramatically in the period from 2002 to 2007. (This was a common experience across
North America.) For some BC institutions, the drop in student numbers coincided with
the arrival of new infrastructure and resources that assumed continuous student growth
based on late-1990s trends, along with expectations that certain targets (e.g., numbers of
graduating students) would be met. For other BC institutions, the drop resulted in
program cutbacks and, in some cases, program cancellations. In nearly all CS and IS/IT
programs there existed pressure to find a way to increase student enrolment while
ensuring the degree of student mastery of established learning outcomes was maintained.
Teaching and learning practices yielding high withdraw-drop-fail (WDF) rates were no
longer considered acceptable, and innovations were introduced as a way to help address
the needs of many learners who have an interest and aptitude for the discipline, but for
whom previous pedagogical approaches resulted in failure to complete a course of study.
Although student numbers are now increasing — albeit nowhere near the levels seen
during the “dot-com boom” — the impulse to innovate as a way of improving student
learning is ongoing and continuing at many institutions.

Therefore a goal of the committee is to help institutions find ways in which they can
introduce the innovations they believe necessary while at the same time ensuring students
in those programs do not experience barriers to transfer resulting from such innovations.
These barriers would be caused by the significantly different approaches to CS and IS/IT

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 4

teaching and learning that have been chosen by institutions, along with challenges of
establishing and maintaining course-by-course transfer.

2. Project Origins

A recurring topic at BCCEC meetings over the past several years has been the challenge
of facilitating articulation of courses between institutions that differ in their approach to
first-year instruction. The existence of these differing approaches is not unique to British
Columbia. For example, the ACM/IEEE Curriculum Proposal for Computer Science
[CS2001] describes six different approaches to even the first computing course
(“Imperative First”, “Objects First”, “Functional First”, “Breadth First”, “Algorithms
First”, “Hardware First”). The task force authoring this curriculum proposal tried to
whittle the six approaches down to a single approach, but was unable to do so:

Throughout the history of computer science education, the structure of the
introductory computer science course has been the subject of intense debate. Many
strategies have been proposed over the years, most of which have strong proponents
and equally strong detractors... In the interest of promoting peace among the
warring factions, the CC2001 Task Force has chosen not recommend any single
approach... Given the current state of the art in this area, we are convinced no one-
size-fits-all approach will succeed at all institutions. [CC2001, p. 22]

At our articulation meetings there has been a sense that some courses have articulated
successfully due to the goodwill amongst personalities in the committee despite
significant differences between the courses. Worded differently, some transfer evaluators
not connected with the committee might compare learning outcomes and topics listed in
an “Objects First” course description with those from a “Functional First” course
description and conclude that they were not the same and should not transfer. That such
courses do currently articulate is the consequence of tacit knowledge held by computing
education professionals participating in the BCCEC.

This project has therefore originated from a desire of the committee to make explicit this
tacit knowledge, and to express it in a form that will support articulation activities. A
variety of ad hoc approaches have been explored at meetings, none leading to success.
Our BCCAT System Liaison Person, Neil Coburn, observed that a more extended study
of the problem with an eye to a possible solution framework — in the form of a Flexible
Pre-Major (FPM) — might be considered a suitable BCCAT Transfer Innovations project.
On May 4, 2007 the BCCEC voted to support the submission of a project proposal for a
Flexible Pre-Major Analysis (which we in the BCCEC have termed the “Feasibility
Study”). A proposal was subsequently submitted to the Transfer Innovations Fund, and
the project was approved. Work on the project began in February 2008.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 5

3. Discipline transfer patterns
The BCCEC has observed three main transfer patterns:

a. Students at teaching universities and colleges within university-transfer programs
transfer at some point after one or more years of studies. This is the traditional
pattern of transfer.

b. Students completing certificates and diplomas at colleges and teaching
universities may wish to transfer to a teaching university (if already at a college)
or a research university (if at a college or teaching university) and wish to
maximize transfer credit available from studies pursued in the program they have
completed.

c. Students at research universities and teaching universities who wish to continue
studies at an institution closer to home, usually a college or some other teaching
university.

We have not completed a statistical survey of student movement in our discipline.
However, such a survey of flows between specific institutions could help us determine
which institutions will see the most benefit from an FPM.

4. Project Objectives

There were two primary objectives/outcomes for the project as set out in our original
proposal.

The first objective was to determine if a Flexible Pre-Major could be constructed on the
assumption that students achieve similar learning outcomes after two years of instruction
whether in the transfer program of a sending institution or within the lower-level of a
receiving institution’s program (and assuming, of course, that the institutions participate
in the Computing Education FPM). If a list of such outcomes could be produced, and if it
would be feasible for an institution to compare its courses with outcomes on this list, then
we would deem an FPM to be feasible. As with other FPMs in the province (such as
Music and Sociology & Anthropology) the focus here is on discipline-specific material;
differences amongst institutions in their handling of English requirements,
complementary studies, SFU’s “WQB” requirement, science credit, etc. would not be
addressed by our proposal.

The second objective was to prepare the details for a process by which the FPM could be
administered. This would include a mechanism used by institutions to join an FPM. Also
needed would be a method for the BCCEC to periodically review the description of the
FPM (i.e., outcomes to be added, or removed, or modified, etc.)

Another objective not made explicit in the project proposal was that we would investigate
the feasibility of two separate FPMs — one for CS programs, and one for IS/IT programs.
Despite some overlap in material (e.g., introductory programming), and despite the fact
the same institution may offer both programs and even have instructors teaching courses

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 6

in both programs, these two kinds of Computing Education have enough differences with
respect to student learning outcomes that two groups of learning outcomes would be
needed.

With respect to our first project objective, we understood that the decision to use learning
outcomes would result in much work. However, we were still surprised by the scale of
the task, i.e., time and consultation needed to achieve meaningful consensus. For the past
16 months we have benefited from guidance given by Jennifer Orum at BCCAT, and
given her experience of other FPM projects she was able to assure us that we were,
indeed, making progress on this project objective. This report is therefore primarily a
description of our work towards this first objective.

As for the second project objective, this report’s “Recommendations” section lists ideas
that emerged during discussions by project-group members and within BCCEC meetings.
At present we do not yet have language or a process that could be used to administer a
Computing Education FPM, and have decided to pass along this task to the future
implementation project.

5. Project Team

We attempted to ensure the project team was an accurate representation of the institutions
making up the BC transfer system. Participating institutions (and individuals from the
institution) were:

* British Columbia Institute of Technology (BCIT): Brian Pidcock

* Langara College: Bryan Green, Mingwu Chen

* Okanagan College: Rick Gee

* Simon Fraser University, Burnaby Campus (SFU): Diana Cukierman

* Thompson Rivers University: Wayne Babinchuck, Mahnhoon Lee

¢ University of British Columbia, Vancouver Campus (UBC): Donald Acton,
Ed Knorr

e University of the Fraser Valley (UFV): Ora Steyn

¢ University of Northern British Columbia (UNBC): David Casperson

¢ University of Victoria (UVic): Michael Zastre

One notable absence from the list is the mention of a private institution. As part of any
future project proposal regarding a possible BCCEC FPM, we will ensure that at least
one such institution (for example, Alexander College or Coquitlam College) is invited to
participate.

The team lead for the project was Michael Zastre.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 7

Problem Statement

1. Traditional Articulation, and Rationale for an FPM

Our standard practice in the BCCEC is to use recommendations from BCCAT on course-
by-course transfer. If a sending institution’s course shares at least 80% of the same
material with a receiving institution’s course (i.e., learning outcomes are largely
identical) then those two courses are said to be equivalent. There are somewhat more
complex schemes for which pairs of courses from a sender are said to be equivalent to
two courses at a receiver. Central to all of such schemes is the existence of an agreement
on transfer between the two institutions that is facilitated by BCCAT.

In Figure 1, for example, institutions A and B cover the same topics in their courses 1, 2
and 3. If institution C wishes to articulate its courses, it may need to establish similar
three-by-three articulations of its courses with both A and B. This system does not scale
well. One approach to reducing the complexity is to establish block-transfer agreements
between institutions. Agreements are still between institutions, and programs are still
compared by comparing courses-by-course, with two-by-two or three-by-three schemes
considered anomalous.

course 1 course 2 course 3

institution A

institution B

institution C

Figure 1: Visualization of mapping topics to courses across institutions

What we have discovered in Computing Education, however, is that two-by-two or even
three-by-three articulation for courses are not enough to cover variants in instructional
delivery across all institutions. At the same time we recognize that after two years of

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 8

study, our students appear to have accomplished the same learning outcomes, albeit in
different topic order. Therefore we asked ourselves these questions:

* Can we identify the core discipline-specific material in the first two years of a CS
or IS/IT program?

* Can we then compare programs against this core rather than against another
institution’s programs?

* What would this comparison system look like? (Figure 2)

We tried to answer the last question by asking ourselves which level of “granularity” or
“detail” should be use to compare courses against each other. The BCCEC found that
using “course topics” at any level of detail does not help — it is hard, for example, to get
any two instructors to agree what topics such as “recursion” or even ‘“sorting” mean with
respect to what is taught in a first- or second-year course. Equivalently it is easy for
instructors to agree that certain topics should be included, but only up to the point before
discussion turns to how that topic is tested; at this point, disagreement usually is the
result.

The point here is not that we want to avoid disagreement. Our intent is that the
mechanism chosen to compare programs should lead to either meaningful agreement, or
lead to disagreement that is also meaningful. “Meaningful disagreement” here indicates
that differences in student learning for some items are indeed different between
institutions and that there is a reason for such a difference. The best mechanism we found
to accomplish this is through the use of learning outcomes, and we therefore chose this as
the level at which we would describe the content of a Flexible Pre-Major program.

institution A institution B

institution C institution D

Figure 2: Comparing institutions’ programs via some mechanism (here unknown)

An important consequence of using such outcomes to describe an FPM — and potentially
identifying an institution’s program as matching the FPM — is that a sending institution
could consider implementing innovations in their curriculum that can articulate to other

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 9

institutions without becoming overly worried by course-by-course articulation. This is
distinctly different from the current environment where educators at a sending institution
often feel constrained to develop a course in such a way that the course is always
guaranteed to be accepted by a receiver — and this becomes even more difficult when
students from the sending institution may go to a range of receivers each of whom has a
different kind of course. Similarly, receiving institutions can choose to implement their
own innovations in pedagogy without requiring senders to initiate a reassessment of
course equivalence. With an FPM, all participating institutions compare themselves
against the FPM and not against another institution. Students completing the FPM at a
sender can then transfer discipline-specific credit to a receiver (i.e., a “basket of courses”
at the sender matching a “basket of courses” at the receiver).

In summary, an FPM based on learning outcomes provides at least three benefits:

* Sending institutions have confidence that they can focus on appropriate pedagogy
for their community of learners.

* Receiving institutions have confidence in the breadth of learning brought by
transferring students.

* Students have confidence that their choice of home institution does not constrain
their choice of where they can complete their degree.

2. Learning Outcomes as part of the Analysis Project

There exists a large literature on learning outcomes (also sometimes referred to as
“learning objectives”). The key is these outcomes describe learning as accomplished by
the student, as distinct from teaching delivered by the instructor. A document published
by BCIT’s Learning & Teaching Centre provides a good answer to the question “What is
a learning outcome?”:

Learning outcomes specify what learners’ new behaviours will be after a learning
experience. They state the knowledge, skills, and attitudes that the students will
gain through [the] course. Learning outcomes begin with an action verb and
describe something observable or measurable. [BCIT2003, p. 2]

Appropriately worded learning outcomes suggest techniques for delivering material in the
classroom or in a lab setting. These also suggest approaches towards evaluating student
learning. This results in a focus on “outcomes, not processes” [BCIT2003, p. 8] in such a
way that different instructors or institutions can choose suitable pedagogical techniques
for their students yet agree on the kinds of student learning which should occur.

A common practice when creating learning outcomes is to use an action verb identified
by Bloom and others in their work on “learning domains” and “taxonomies” [Bloom56].
Each learning domain (e.g., the “cognitive domain”) is a taxonomy of behaviours
arranged from the most simple and ending with the most complex. For example, in the
cognitive domain, behaviours start with “knowledge” (remembering previously learned

9 <6 9% ¢

material), then lead to “comprehension”, then “application”, “analysis”, “synthesis”, and

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 10

end with “evaluation”. Bloom and his colleagues were motivated to develop these
taxonomies as part of the work in several Examination Boards. They were trying to
develop a rational approach for assessing exams and tests across different institutions and
determining possible equivalence.

The largest amount of effort devoted by the project committee to our Analysis project
was, by far, devoted to meetings and discussions for identifying learning outcomes for
discipline-specific learning in Computer Science or discipline-specific learning in
Information Science / Information Technology. It bears repeating that crafting these
outcomes meant eliciting disagreement from discussion participants about the meaning of
a particular outcome. A particular wording of a learning outcome may have been too
vague, or too specific, or too ambiguous. A learning outcome with an advocate at one
institution may have had as passionate a detractor from another institution. (More will be
said of this under the “Process” section.)

3. A word of caution about Learning Outcomes

At this point, some readers with experience of learning outcomes may already object
strongly towards their suitability for designing an FPM.

Objection 1: “Learning outcomes are too vague.” There can be a place for outcomes
phrased using more general language, although usually this is when more specific
outcomes are associated with the general outcome. However, at times the vagueness is
due to an inappropriate choice of action verb. For example, there is a temptation to use
the verb “understand” or “know” as an action verb, yet it can be hard to agree on what
these mean when assessing student learning. Those experienced with crafting learning
outcomes will instead substitute a more specific verb such as “identify”, “define”,
“describe” or “demonstrate” [BCIT2003, p. 4]. Vagueness of learning outcomes is
evidence that the authors of the outcome were inexperienced. Vagueness is not a property
inherent to learning outcomes.

Objection 2: “We have no course that covers all these learning outcomes, nor could we
ever have such a course.” While learning outcomes are often used for course
development or program approval, a set of such outcomes does not necessarily
correspond to a specific course. Throughout our project we had to remind ourselves over
and over again that we were focusing on the first two years of a program and not a
specific course. Two learning outcomes with a similar object may stand side-by-side in a
list of outcomes (e.g., “Define/describe a binary tree” vs. “Present an algorithm that can
be used to find the height of a binary tree”) yet the former might be part of a first-year
course, and the latter a part of a second-year course. A list of learning outcomes need not
correspond to a single course.

Objection 3: “Writing learning outcomes requires too much effort, and it is far easier
to compare course content by using topics or textbooks.” Where there is already
significant agreement on what constitutes a course (e.g., in some other BCCAT

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 11

articulation committees), there may indeed be little gained with respect to articulation by
devoting a lot of effort to crafting learning outcomes. In our experience the objection
with respect to effort has some validity if it applies to an individual writing outcomes on
their own, yet it is not true when a group of experienced educators collaborates
(preferably in the same space at the same time) on writing learning outcomes. Such
efforts translate into increased precision. The greater the precision, the easier it is to
identify clearly when a learning outcome is (or is not) part of a course or program.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 12

Process

1. Plan of meetings

The original project proposal listed a mix of in-person meetings with video-conferenced
meetings, including meetings scheduled to directly precede regular BCCEC meetings.
We soon discovered that in-person meetings were easier to arrange and were the most
productive when crafting learning outcomes.

There were three meetings involving only the project committee:

* February 21 & 22, 2008: Held at UBC
* April 30, 2008: Held at UVic
* December 12,2008: Held at UFV

and the last meeting involved the project committee with attendees at the Fall 2009
BCCEC meeting:

e QOctober 22 & 23,2009: Held at UFV

2. Sources and Resources

At its first meeting our project committee identified four topic areas in Computer Science
(“Introduction to Programming”, “Computer Architecture”, “Algorithms and Discrete
Structures”, “Software Engineering”) and four topics areas in Information Systems /
Information Technology (“Hardware Systems”, “Web Learning”, “Information
Management”, “Networks”). At that meeting we also identified learning outcomes for
one CS topic area “Introduction to Programming” (see Appendix A). We identified two

main sources for wording of outcomes.

One source is the set of ACM/IEEE Curriculum proposals [CS2001, CS2008, IT2008].
The task force was made up of members of the Association for Computing Machinery
and the IEEE Computer Society. A full four-year program is described in [CS2001], and
specific IS/IT curricula and possible courses are listed in [IT2008]. Some topic areas
described in the curriculum proposal include clearly-written learning outcomes, and these
were helpful to our own FPM project. We have tried where possible to indicate when we
have used an outcome from these documents.

Another source of outcomes are course outlines and course descriptions from BC
institutions. At our second meeting (April 2008) we assigned two or three institutions
from the project committee to each of the eight topic areas. Each institution then assigned
to a topic area a selection of their courses appropriate to that area (i.e., one course from
their first or second year) and prepared a list of learning outcomes based on this course.
All learning outcomes for the same topic from different institutions were then combined
together, and these combined sets for each topic became the starting point for further
discussions by the project committee.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 13

At our third meeting (December 2008) we tackled another topic area (“Algorithms and
Discrete Structures”) and by the end of the daylong session we completed a list of this
area’s outcomes (see Appendix B). We also concluded that effort corresponding to a
daylong meeting was required for each remaining topic area (i.e., six more days of
meetings) if we wanted to prepare accurate learning outcomes. We then recognized that
one very valuable resource available to the project was the membership of the BCCEC
itself. At the May 2009 meeting of the BCCEC we asked it to devote the Fall 2009
meeting to the work required for completing all remaining topic areas. Members of the
project committee were prepared to act as facilitators for this work. The BCCEC
membership agreed, and the days of October 22 & 23, 2009 were devoted to the other six
topics areas.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 14

Findings
1. Learning outcomes (L Os): Enabling vs. Summary

The project committee together with members of the BCCEC has prepared eight lists of
learning outcomes, one for each topic area (four in CS, four in IS/IT). These lists appear
in the appendix.

We also discovered that a list could be broken into two parts. One part contains “enabling
learning outcomes”, where each outcome could easily appear as part of a course
description or as guides for instructional development. Such outcomes could also guide
an educator in crafting an exam question, assignment, project or some other instrument
suitable for evaluating student progress. The second part of the list consists of “summary
learning outcomes” which are sets of enabling LOs. Each summary LO is still phrased
using best practices (e.g., beginning with an action verb) and students achieving such an
outcome will have demonstrated mastery of most of the associated enabling LOs.

Another feature of the relationship between these two parts of an LO list is that an
enabling LO may belong to two or more summary LOs. Strict partitioning of enabling
LOs in summary LO sets is not necessary.

An assumption of the project committee is that an institution will compare its program
with the FPM at the level of summary LOs. If educators or administrators are unclear as
to the precise meaning of a particular summary LO, they then can refer to the detail
available in its associated set of enabling LOs.

Once the resulting course matrix representing the FPM is completed (i.e., assuming the
BCCEC goes ahead with an implementation project), the matrix provided to BCCAT will
associate a basket of courses at institution A with a basket of courses at institution B.
(This assumes institutions A and B are part of the FPM.)

2. Possible mechanisms for administration of the FPM

One topic to which the project committee turned repeatedely was the question of how the
BCCEC can determine when an institution’s program can be part of the FPM. At its core
our FPM is based on learning outcomes, yet the sets of LOs (summary and enabling) are
intended to be a union (i.e., a superset) of LOs from all institutions. Therefore by
definition it would be very difficult, if not impossible, for any institution to match 100%
of the BCCEC FPM learning outcomes for a given topic.

Therefore an open question is the percentage match an institution’s learning outcomes
must have with the FPM to be considered sufficient for the institution’s participation in
the FPM. There are several ways this might be applied. For example, joining the FPM for
Computer Science might mean one of:

* 80% match of summary LOs in each of the four topic areas, or

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 15

* 80% match of summary LOs from the combination of all four topic areas, or
* 1o less than an 80% match of summary LOs for any of the four topic areas
where “80%” may be substituted by some other figure decided upon by the BCCEC.

Given that this is a relatively new model for articulation, we expect any implementation
phase following this analysis project will begin with consulting Registrars’ Offices from
several different institutions.

As for maintenance of the lists of LOs, the level of detail they provide suggests a two-
phase approach to review of an FPM, assuming reviews occur every three or four years.
In the first phase the list of outcomes are re-examined, with some LOs rephrased, some
LOs deleted, some new LOs added, but the majority unchanged. In the year following
this review, institutions participating in the FPM can compare their programs against the
revised lists. This may mean some institutions substitute different courses against the
FPM, or perhaps even revise existing courses to add missing outcomes to their programs.

Changes to the topic areas themselves (i.e., addition of relevant new areas, deletion of
obsolete older areas) should occur far less frequently than regular reviews. Such changes
could occur on an ad hoc basis, and would happen when the BCCEC determines via a
formal vote that a topic change is necessary.

3. Several other open questions

What might an FPM look like from a student’s point of view? This refers to the
documentation issued by a student’s home institution, and which the receiving institution
would accept. Ideally the student’s transcript would have a notation indicating that in
completing a course of study they have also completed the student learning comprising a
CS or IS/IT Flexible Pre-Major. However, introducing notations to transcripts is difficult
and Registrars are rightly hesitant to do so. Another model is that the home institution’s
department prepares a letter for the student indicating completion of FPM material, and
the participating receiving institution’s department then accepts the letter.

What would be the relationship of the FPM to existing course-by-course transfer
agreements? We mentioned earlier some of the challenges in our discipline caused by
differing approaches to introductory CS education. If we assume that the flexibility to
innovate provided through the FPM is embraced by an institution, then some of that
institution’s existing course-by-course transfers may become more and more difficult to
maintain. Students completing the “basket of courses” at such an institution will have no
difficulty here, but those students completing some but not all courses in such a basket
may find they receive general-level credit instead of specific course transfers. This is not
a desirable outcome.

How best can such an FPM by communicated to students, faculty and administrators?
One of the biggest challenges we found as a project committee was when any one of us

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 16

forgot to focus on LOs at the program level. We therefore needed to remind ourselves
over and over again about our proper focus. One reason why we forget is because we
usually think in terms of courses. Current students, faculty colleagues, and administrators
handling student transfers are also likely to think in terms of courses when trying to
comprehend the FPM (and may therefore draw incorrect conclusions).

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 17

Recommendations

At the end of the Fall 2009 BCCEC meeting, the committee considered the work of the
project committee and discussed much of the material and questions which are now
assembled in this report. The outcome of this discussion was that the BCCEC believed an
FPM is indeed feasible, and that it should proceed to an implementation phase. On the
last day of the meeting (October 23, 2009) the BCCEC considered the following motion:

BCCEC recommends that a funding proposal to the TAC for Phase 2 of the
FPM by created for the May [2010] BCCEC meeting.

“Phase 2” here refers to a “Flexible Pre-Major Implementation Project.” The motion was
moved, seconded and carried.

What follows are recommendations from the project committee for consideration in the
implementation-phase project.

Refine existing LO lists. Not all topics are organized with summary LOs and enabling
LOs, and some LOs require rewording (i.e., changing the verb “understand” to a more
appropriate verb). Some topics require much more detail, and revising LOs in other
topics may result in some contention depending on the form of consultation that is used
(“Computer Architecture” is one example). Overall the lists could be made more
consistent with each other and may benefit from recent work on taxonomies for learning
in ITC (Information Technology and Communication) disciplines. Above all, LOs must
be meaningful.

Obtain institutional consensus on wording of FPM participation. The purpose of the
FPM lists is to provide flexibility to institutions and to focus on student outcomes. They
are not meant to prescribe process or “time on task™ (e.g., nothing in the FPM refers to
hours spent by students in labs). Receiving institutions need assurance that students
transferring via an FPM bring enough completed outcomes to be considered equivalent
with other students at that institution. Registrars also need some assurance that the
administration involved with such transferring students is practicable. Finally, faculty at
both sending and receiving institutions should accept the role of such LOs in enabling the
transfer of student learning between institutions.

Identify other benefits of work from our F PM studies and share it with others. Some of
the extra benefits are:

* Using the LOs to help with interprovincial student transfer.

* Ensuring lists are available to help students discover what they will learn in an
FPM program.

* Showing employers these lists so that they understand what CS and IS/IT students
learn at our institutions.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 18

* Providing material for dialogue with teachers in the K-12 school system as they
already make extensive use of LOs in their own instructional development and
delivery.

* Assisting academic units preparing for External Reviews or visits from
accreditation bodies.

* Providing a resource for private institutions considering the creation of new ITC
programs.

Consider how best to communicate the nature of our FPM to students. There was some
discussion by the project committee on the suitability of a website that helps students
plan their CS or IS/IT education via learning outcomes.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 19

Some additional comments

At BCCAT’s November 6,2009 JAM (Joint Annual Meeting of Articulation Committee
Chairs, SLPs and ICPs), the project committee’s work was presented. As part of that
presentation some “cautions” (i.e., “lessons learned”) for a project such as ours were
shared. They are repeated here in the hope they will help any other articulation
committees wishing to try an approach such as ours.

Accept no substitute for in-person meetings. As befits information technologists such as
ourselves, we tried using e-mail, wikis, distributed-meeting tools, etc. to facilitate our
work. In the end, however, we found that crafting meaningful LOs required a lot of give-
and-take (not to mention reading body language) in front of a whiteboard. The meanings
of certain word, verbs, or technical terms for topics are suitably clarified with such
discussion, especially if participants feel comfortable to express doubt, confusion or
outright disagreement. An assumption here is that relationships amongst committee
members are already collegial such that it is possible to have disagreement without
disrespect.

Budget more than a year to do the analysis. Our FPM Analysis project is now complete,
and this is 21 months after we started. Our intention in the original project proposal was
to perform all work (consultation, deriving lists of LOs, agreement on wording of FPM
participation) in 12 months. Thankfully we received much flexibility from BCCAT in the
adjustment of project deadlines. We were far too ambitious.

Avoid searching for perfect sets of learning outcomes. There exists no perfect taxonomy
of learning. At present the community engaged in research in Scholarship of Teaching
and Learning (SoTL) continue to produce additional taxonomies and methods for
expressing learning outcomes. We expect our lists to be revised in the future, and also
expect this revision to improve the utility of the outcomes. Similarly we would
recommend against phrasing learning outcomes solely to ensure there is no disagreement
— sometimes we found it helpful to include outcomes in apparent conflict if only because
educators adopt certain outcomes due to personal temperament and learning style. We
prefer to maintain this kind of diversity, and we achieved this by building consensus.

This is not about courses or topics. There will always exist the temptation to slip back
into thinking about course-by-course transfers, and usually these transfers are established
by examining lists of topics. In our experience, educators often agree (trivially) on choice
of topics, yet disagree about learning outcomes. We strongly recommend setting aside
topics and banishing the verb “understand” from LOs.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 20

Acknowledgements

The project committee wishes to thank:

Donald Acton, University of British Columbia, Vancouver for establishing and
maintaining an excellent TWiki site that acted as a superb information repository
for the project;

Neil Coburn, Selkirk College (and the BCCEC’s System Liaison Person) for
suggesting the idea of preparing an FPM Analysis project proposal;

Jennifer Orum, BCCAT for advice and encouragement to the BCCEC and her
assurances that we were on the right track;

Jean Karlinski, BCCAT for handling the reimbursement of project expenses so
quickly and so cheerfully;

and Ora Steyn and Paul Franklin, University of the Fraser Valley for acting as
cheerful hosts to the project committee and BCCEC on more than one occasion.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 21

Reference Works

[BCIT2003] “Writing Learning Outcomes.” Learning Resources Unit of the British
Columbia Institute of Technology. 1996, revised 2003. Available at:
https://helpdesk.bcit.ca/fsr/teach/courseprep/htoutcomes.pdf

[Bloom56] “Taxonomy of Educational Objectives: The Classification of Education goals
(Handbook 1, Cognitive Domain)”, Benjamin Bloom, Editor. Longmans, Green (New
York, Toronto). 1956.

[CS2001] “Computing Curricula 2001, Final Report.” The Joint Task Force on
Computing Curricula, Institute for Electrical and Electronic Engineers (IEEE) Computer
Society and the Association for Computing Machinery (ACM). December 2001.
Available at: http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

[CS2008] “Computer Science Curriculum 2008: An Interim Revision of CS 2001.”
Association for Computing Machinery and the Institute for Electrical and Electronic
Engineers (IEEE) Computer Society. December 2008. Available at:
http://www.acm.org//education/curricula/ComputerScience2008.pdf

[IT2008] “Information Technology 2008: Curriculum Guidelines for Undergraduate
Degree Programs in Information Technology.” Association for Computing Machinery
and the IEEE Computer Society. November 2008. Available at:

http://www .acm.org//education/curricula/IT2008 %20Curriculum.pdf

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 22

Appendices

Eight sets of lists are included here. Listed below for each topic area are the names of
those who participated in the discussions that generated each list. Names in italics
correspond to those who prepared a written version of the discussion. All lists were
converted into a canonical form by the team lead, Michael Zastre (i.e., summary
outcomes are itemized by letter, enabling outcomes are itemized by number).

CS: Introductory Programming Languages

* Mingwu Chen, Langara College

* David Casperson, University of Northern British Columbia
* Diana Cukierman, Simon Fraser University, Burnaby

* Rick Gee, Okanagan College

* Bryan Green, Langara College

* Ed Knorr, University of British Columbia Vancouver

* Mahnhoon Lee, Thompson Rivers University

* Brian Pidcock, British Columbia Institute of Technology

* Ora Steyn, University of the Fraser Valley

* Michael Zastre, University of Victoria

CS: Algorithms and Discrete Structures

* Donald Acton, University of British Columbia Vancouver
* Wayne Babinkchuk, Thompson Rivers University

* Mingwu Chen, Langara College

* Diana Cukierman, Simon Fraser University Burnaby

* Rick Gee, Okanagan College

* Bryan Green, Langara College

* Ed Knorr, University of British Columbia Vancouver

* Ora Steyn, University of the Fraser Valley

* Michael Zastre, University of Victoria

CS: Computer Architecture

* David Casperson, University of Northern British Columbia
* Diana Cukierman, Simon Fraser University Burnaby

* Ed Knorr, University of British Columbia Vancouver

* Anne Lavergne, Simon Fraser University Burnaby

* Nalin Wijesinghe, Langara College

* Saif Zahir, University of Northern British Columbia

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 23

CS: Software Engineering

David Casperson, University of Northern British Columbia
Rick Gee, Okanagan College

Ed Knorr, University of British Columbia Vancouver
Anne Lavergne, Simon Fraser University Burnaby

Tim Topper, Yukon College

Saif Zahir, University of Northern British Columbia

Hardware Systems

Mohd Abdullah, Thompson Rivers University

Ken Chan, Columbia College

Diana Cukierman, Simon Fraser University Burnaby
Paul Franklin, University of the Fraser Valley

Brian Pidcock, British Columbia Institute of Technology

Web Learning

Jim Bailey, College of the Rockies

Bryan Green, Langara College

Ora Steyn, University of the Fraser Valley

Easwari Thoreraj, Selkirk College

George Tsiknis, University of British Columbia Vancouver

Information Management

Jim Bailey, College of the Rockies

Ken Chan, Columbia College

Paul Franklin, University of the Fraser Valley
Rick Gee, Okanagan College

Ora Steyn, University of the Fraser Valley

Networking

Mohd Abdullah, Thompson Rivers University

Bryan Green, Langara College

Brian Pidcock, British Columbia Institute of Technology
Easwari Thoreraj, Selkirk College

Tim Topper, Yukon College

Raymond Yu, Douglas College

Final Report: Computing Education Flexible Pre-Major Analysis Report

Page 24

December 31, 2009

Introduction to Programming Languages (Computer Science)

Enabling Learning Objectives
Prepared: February 21/22, 2008 (@ UBC Vancouver)

Original Source key:

FPM: Flexible Pre-Major Feasibility committee

PFn: ACM/IEEE "Programming Fundamentals" learning outcomes (section n)
PLn: ACM/IEEE "Programming Languages" learning outcomes (section n)
Aln: ACM/IEEE "Algorithms and Complexity" learning outcomes (section n)

Enabling Learning Objective

Original source

1 [Explain the behavior of a provided code fragment. FPM
Modify an existing code fragment in order to add to its

2 .) . FPM
behavior or change its behavior.
Modify and expand short programs that use standard

3 L . PF1
conditional structures and functions.
Modify and expand short programs that use standard iterative

4 . PF1
control structures and functions.

5 |Write well-structured, well-documented, understandable code. FPM

6 [Describe the role of documentation and comments. FPM

7 |Use language-appropriate idioms. FPM

8 [Write well-structured external documentation. FPM
Design, implement, test, and debug a program that uses each

9 of the followig fundamental programming constructs: basic PF1
computation, simple I/O, standard conditional and iterative
structures, and the definition of functions.

10 |Describe the conditional structures available in a language. FPM PF1

11 Use the appropriate conditional structures available in a EPM PF1
language.

12 Choose appropriate conditional and iteration constructs for a PF1
given programming task.
Use pseudocode or diagrams or both to describe the steps

13 |. . . . PF2, FPM
involved in solving simple problems.

14 |Describe the iteration structures available in a language. FPM, PF1

Use the appropriate iteration structures available in a

15 FPM, PF1
language.

16 Apply the techniques of structured (functional) decomposition PF1
to break a program into smaller pieces.
Understand the role of pseudocoding and diagramming in

17 . FPM
decomposing problems.
Demonstrate the role of formal and actual parameters and

18 . FPM
function arguments.

19 |Identify the necessary properties of good algorithms. PF2

20 [Define algorithm. FPM

21 |Create algorithms for solving simple problems. PF2

22 |Trace the execution of a program (e.g., desk checking). FPM
Describe strategies that are useful in removing errors

23 . PF2
(debugging).

24 |Use strategies that are useful in removing errors. FPM
Interpret error messages (compiler, run-time, etc.) and

25 . FPM
understand their causes.

26 |Interpret system documentation. FPM
Interpret language documentation for exploring language

27 FPM
features.
Discuss the representation and use of primitive data types and

28 o .) PF3
built-in data structures (e.g., strings, arrays, files, etc.).

29 |Describe how strings are allocated, manipulated and used. PF3

30 |Describe how arrays are allocated, manipulated and used. PF3

31 |Describe how records are allocated, manipulated and used. PF3
Describe how lists, stacks and queues are allocated,

32 . PF3
manipulated and used.

33 |Describe how trees are allocated, manipulated and used. PF3

34 |Describe how graphs are allocated, manipulated and used. PF3

35 Describe how hash tables are allocated, manipulated and used. PE3

36 Implement user-defined data structures in a high-level PF3
language.

37 Compare alternative implementations of data structures with PF3

respect to performance.

Compare and contrast the costs and benefits of dynamic and

L static data structure implementations. PF3

39 Choose the appropriate data structure for modeling a given PF3
problem.
Implement user-defined data structures using pointers and

40 FPM
references.
Use generic data structures or templates to solve a given

41 FPM
problem.
Demonstrate familiarity with contents of industry-standard

42 . . FPM
data structure libraries.

43 [Create a complete suite of tests for a piece of software. FPM

44 |Criticize an existing suite of tests for a piece of software. FPM
Devise appropriate pre- and post-conditions for methods or

45 . FPM
functions.

46 Describe the concept of recursion and give examples of its use. PFE4
Identify the base case and the general case of a recursively

47 . PF4
defined problem.
Compare iterative and recursive solutions for elementry

48 . PF4
problems such as factorial.

49 [Compare and constrast mathematical induction and recursion.

50 |Formulate loop invariants for simple loops. FPM

51 |Demonstrate code correctness given a loop invariant. FPM

52 |Demonstrate loop termination. FPM

53 [Demonstrate correct handling of boundary conditions. FPM

54 |Describe the divide-and-conquer approach. PF4

55 Implement, test, and debug simple recursive functions and PE4
procedures.

56 [Describe how recursion can be implemented using a stack. PF4
Discuss problems for which backtracking is an appropriate

57 . PF4
solution.
Determine when a recursive solution is appropriate for a

58 PF4
problem.

59 Develop code that responds to exception conditions raised PF5.3

during execution.

Explain the difference between event-driven programming and

60 . . PF5
command-line programming.
Design, code, test and debug simple event-driven programs

61 PF5
that respond to user events.

62 Design, code, test and debug simple multi-threaded programs. EPM
Determine when a multi-threaded solution is appropriate for a

63 FPM
problem.

64 Explain the use of big O, omega, and theta notation to AL1
describe the behavior of functions.
Use big O, omega, and theta notation to give asymptotic

65 |upper, lower, and tight bounds on time and space complexity AL2
of algorithms.
Determine the time and space complexity of simple

66 . AL1
algorithms.

67 |Relate the complexity class of an algorithm to its scalability. FPM
Describe the kinds of operations we can measure in evaluating

68 . FPM
the performance of an algorithm.

69 |Rank algorithms by rate of growth. FPM
Compare and contrast best-, worst- and average-case

70 . FPM
behaviors.
Implement a greedy algorithm to solve an appropriate

71 AL2
problem.
Implement the most common quadratic and O (N log N)

72 . . AL3
sorting algorithms.
Design and implement an appropriate hashing function for an

73 i AL3
application.
Design and implement a collision-resolution algorithm for a

74 AL3
hash table.
Discuss the computational efficiency of the principal algorithms

75 :)) AL3
for sorting, searching and hashing.
Discuss factors other than computational efficiency that

76 influence the choice of algorithms, such as programming time, AL3

maintainability, and the use of application-specific patterns in
the input data.

77 |Solve problems using fundamental graph algorithms. AL3
Justify the choice of algorithms for a given problem with

78 . . : FPM
reference to algorithm time and space properties.
Design and implement a dynamic programming solution to a

79 ALS
problem.

80 |Discuss the concept of finite state machines. AL5

81 |Discuss the concept of a deterministic finite automata. FPM

82 |Explain context-free grammars. ALS5

83 Design a deterministic FSM to accept a simple regular ALS
expression.

84 |Explain how some problems have no algorithmic solution. AL5
Provide examples that illustrate the concept of

85 e AL
uncomputability.
Justify the philosophy of object-oriented design and the

86 |concepts of encapsulation, abstraction, inheritance and PL6
polymorphism.
Design, implement, test and debug simple programs in an

87)) . PL6
object-oriented programming language.
Describe how the class mechanism supports encapsulation and

88 |. . L PL6
information hiding.
Design, implement, and test the implementation of is-a

89 |relationships among objects using a class hierarchy and PL6
inheritance.
Compare and contrast the notions of overloading and

90 . : . . PL6
overriding methods in an object-oriented language.

91 Expain the relationship between the static structure of the PLG
class and the dynamic structure of the instances of the class.

92 |Describe how iterators access the elements of a container. PL6

93 |Interpret UML class diagrams. FPM

94 lidentify the classes implied by a problem. FPM
Create a UML class diagram that associates classes identified

95 |. FPM
in a problem.
Create a UML sequence diagram representing object

96 |. . FPM
interaction.

97 |Interpret UML interaction diagrams. FPM

Compare and contrast compiled and interpreted execution

= models, outlining the relative merits of each. HE
99 Describe the phases of program translation from source code PL3
to executable code and the files produced by these phases.
Explain the differences between machine-dependent and
100 |machine-independent translation and where these differences PL3

are evident in the translation process.

Algorithms + Data Structures (Computer Science)
Enabling Learning Objectives (with cross-reference to Summary Learning Objectives)
Prepared: December 12, 2008 (@ University of the Fraser Valley)

Enabling Learning Objective
Understand how to graph the following functions: c, Ig x, x, xlg

Original source

Summary cross-reference

1 TRU
X, X2, 2X
Demonstrate mathematical literacy (competence, familiarity,

2 |ability to use to solve problems) in sets, functions, and UBC
mathematical symbols

3 Apply sets and functions to hashing, complexity analysis, UBC
counting, and generally supporting exact problem expression.
Communicate effectively through set parlance and notation

4 |(e.g., be able to translate general problem into rigorous uBC
problem statements throughout the course).

5 |Understand the notion of mapping between sets. UBC

6 |Prove one to one and onto for finite and infinite sets. UBC

2 Recognize the different classes of functions in terms of their UBC
complexity.

8 |Understand what is meant by asymptotic behavior. TRU
Understand the differences between big O, big Omega, and big

9 TRU
Theta.
Understand the time taken to execute programs with Big O

10 |values (i.e. complexity classes) listed as c, Ig x, x, xlg x, x~2, TRU
2 NX
Define which program operations we measure in an algorithm

11 |in order to approximate its efficiency (e.g., number of UBC
instructions, steps, function calls, comparisons, swaps).
Define "input size" and determine the effect (in terms of

12 : : . UBC
performance) that input size has on an algorithm.
Give examples of common practical limits of problem size for

13 . UBC
each complexity class.

14 Explain the differences between best, worst, and average case UBC

analysis.

Describe why best-case analysis is rarely relevant and how

| F |
| L |

15 . . . UBC
worst-case analysis may never be encountered in practice.

16 |Understand how a sequential search works. TRU, SFU

17 |Calculate the Big O value for a sequential search TRU, SFU
Compute the worst-case asymptotic complexity of an algorithm

18 |(e.g. the worst possible running time based on the size of the UBC
input (N)).
Examine some modifications to a sequential search designed

19 |to enhance its performance, and calculate the Big O value for TRU
each enhancement.

20 |Differentiate an abstraction from an implementation. UBC

21 _ummn._‘_um list, stack md.n_ queue data structures along with their SFU, UBC
public-interface specifications.
Demonstrate how dynamic memory management is handled in

22 [[an imperative language] (e.g., allocation, deallocation or UBC
garbage collection, memory heap, run-time stack).
Gain experience with pointers/references in [an imperative

23 [language] and their tradeoffs and risks (dangling pointers, UBC
memory leaks).
Implement as ADTs -- using both index-based and

24 |reference/pointer techniques -- list, stack and queue data SFU, UBC
structures.
State examples of problems that can be solved using stack,

25 UBC
queues, and dequeues abstract data types.

26 |Recognize algorithms as being iterative or recursive. UBC

27 Prove that a loop invariant holds for a given code or algorithm UBC
example.
Describe the relationship between recursion and induction

28 |[(e.g. take a recursive code fragment and express it UBC
mathematically in order to prove its correctness inductively).
Implement iterative and recursive versions of operations on

29 |list, stack and queue data structures, and discuss the impact SFU, UBC
of the implementation choice.

30 |Understand how a binary search works. TRU, SFU

31 |Calculate the Big O value for a binary search. TRU, SFU

_E |
n
_

B
B
-
_E |
1|

Examine some modifications to a binary search designed to

=
=

32 |enhance its performance, and calculate the Big O value for TRU, SFU
each enhancement.

33 |Understand how a hash search works. TRU, SFU

34 |Calculate the Big O value for a hash search. TRU, SFU
Examine some modifications to a hash search designed to

35 |enhance its performance, and calculate the Big O value for TRU
each enhancement.
Describe tree, hash-table, heaps and priority-queue data

36 . ; o . SFU
structures along with their public-interface specifications.
Implement and manipulate a heap using an array as the

37 . UBC
underlying data structure.
Implement as ADTs -- using both index-based and

38 |reference/pointer techniques -- tree, hash-table, heaps and SFU
priority-queue data structures.
Implement iterative and recursive versions of operations on

39 [tree, hash-table, heaps and priority-queue data structures, SFU, UBC
and discuss the impact of the implementation choice.
Provide examples of appropriate applications for priority

40 UBC
queues and heaps.
Provide examples of the types of problems that can benefit

41 UBC
from a hash data structure.
Compare and contrast open addressing and chaining [for heap

42 UBC
data structures].

43 Evaluate collision resolution policies [for heap data structures]. UBC

44 Describe the conditions under which hashing can degenerate UBC
from O(1) expected complexity to O(n).
Identify the types of search problems that do not benefit from

45 . . . UBC
hashing (e.g., range searching) and explain why.
Describe how tail-recursive algorithms can require less space

46 ; . . . UBC
complexity than non-tail recursive algorithms.
Draw a recursion tree and relate the depth to a) the number of

47 |recursive calls and b) the size of the runtime stack. Identify UBC

and/or produce an example of infinite recursion.

48 |Understand how a bubble sort works. TRU, SFU

49 [Calculate the Big O value for a bubble sort. TRU, SFU
Examine some modifications to the bubble sort designed to

50 |[enhance its performance, and calculate the Big O value for TRU
each enhancement.

51 |Implement the bubble-sort algorithm. SFU

52 |Understand how a selection sort works. TRU, SFU

53 |Calculate the Big O value for a selection sort. TRU, SFU, UBC
Examine some modifications to the selection sort designed to

54 [enhance its performance, and calculate the Big O value for TRU
each enhancement.

55 |Implement the selection-sort algorithm. SFU

56 |[Understand how a insertion sort works. TRU, SFU

57 |Calculate the Big O value for a selection sort. TRU, SFU, UBC
Examine some modifications to the insertion sort designed to

58 |[enhance its performance, and calculate the Big O value for TRU
each enhancement.

59 |Implement the insertion-sort algorithm. SFU

60 |Understand how a merge sort works. TRU, SFU

61 |Calculate the Big O value for a merge sort. TRU, SFU, UBC
Examine some modifications to the merge sort designed to

62 |enhance its performance, and calculate the Big O value for TRU
each enhancement.

63 |Implement the merge-sort algorithm. SFU

64 |Understand how a quicksort works. TRU, SFU

65 |Calculate the Big O value for a quicksort. TRU, SFU
Examine some modifications to the quicksort designed to

66 |enhance its performance, and calculate the Big O value for TRU
each enhancement.

67 |Implement the quicksort algorithm. SFU
Compare and contrast the space requirements for merge sort

68 . UBC
versus quicksort.

69 Describe and apply various sorting algorithms; Compare and UBC, SFU

contrast their tradeoffs.

State differences in performance for large datasets versus

70 . . . TRU, SFU
small datasets on various sorting algorithms.

71 |Define/describe a binary tree. UBC

72 |Apply basic tree definitions to classification problems. UBC

73 |Explain why a binary tree is useful in CS. TRU, SFU
Present an algorithm that can be used to find the height of a

74 |, . TRU
binary tree.

75 [Discuss the Big O value of the algorithm in E3. TRU, SFU

76 Discuss tree traversal algorithms - InOrder, PostOrder, TRU, SFU
PreOrder
Discuss the Big O values of InOrder, PostOrder and PreOrder

77 - TRU
traversal algorithms.

78 |Explain why a binary search tree is useful in CS. TRU
Present common binary-search tree algorithms such as search

7 for data, adding data, deleting data. TRU, SFU, UBC

80 Discuss the Big O value of common binary-search tree TRU. SFU
algorithms (search for data, adding data, deleting data). !
Describe the properties of binary trees, binary search trees,
and more general trees; and implement iterative and recursive

81 . S ; . . UBC
algorithms for navigating them in [an imperative language].
Compare and contrast ordered versus unordered trees in terms

82 . . UBC
of complexity and scope of application.
Categorize an algorithm into one of the common complexity

83 i L . UBC
classes (e.g. constant, logarithmic, linear, quadratic, etc.).
Given two or more algorithms, rank them in terms of their

84 | . UBC
time and space complexity.
Compare and contrast [the concepts of] space and time

85 : UBC
complexity.
Describe the structure, navigation and complexity of an order

86 UBC
m B+ tree.

87 |Insert and delete elements from a B+ tree. UBC
Explain the relationship among the order of a B+ tree, the

88 [number of nodes, and the minimum and maximum capacities UBC

of internal and external nodes.

Give examples of the types of problems that B+ trees can

89 .. UBC
solve efficiently.

90 |Compare and contrast B+ trees and hash data structures. UBC
Explain why B+ trees are preferred dynamic data structures in

91 . UBC
relational database systems.
Discuss the tradeoffs in algorithm performance with respect to
space and time complexity. E.g., Compare and contrast the

92 . . . : UBC
space requirements for a linked list (single, double) versus an
array-based implementation.
Given a [program fragment], write a formula which measures

93 |the number of steps executed as a function of the size of the UBC
input (N).
Take a loop code fragment and express it mathematically in

94 |order to prove its correctness inductively (specifically UBC
describing that the induction is on the iteration variable).

95 |In simpler cases, determine the loop invariant. UBC
Apply counting principles to determine the nhumber of

96 |arrangements or orderings of discrete objects, with or without UBC
repetition, and given various constraints.
Use appropriate mathematical constructs to express a counting

97 |problem (e.g. counting passwords with various restrictions UBC
placed on the characters within).
Identify problems that can be expressed and solved as a

98 |combination of smaller sub problems. When necessary, use UBC
decision trees to model more complex counting problems.
Solve problems using combinatorial arguments and algebraic

99 UBC
proofs.
State the relationship among recursion, Pascal's Triangle, and

100 . . UBC
Pascal's Identity.

101 |Define binomial distribution and identify applications. UBC

102 _,_.oaw_ mqa solve appropriate problems using binomial UBC
distribution.

103 Apply basic probability theory to problem solving, and identify UBC

the parallels between probability and counting.

Define various forms of the pigeonhole principle; recognize and

104 |solve the specific types of counting and hashing problems to UBC
which they apply.

105 |Discuss the Big O of spanning-tree algorithms. TRU

106 |Perform breadth-first and depth-first searches in graphs. UBC

107 xplain why graph traversals are more complicated than tree UBC
traversals.

108 U_mnc.mm Prim's and Kruskal's minimal spanning-tree TRU
algorithms.

109 |Discuss the Big O of minimal spanning-tree algorithms. TRU
Describe the properties and possible applications of various

110 |kinds of graphs (e.g., simple, multigraph, bipartite, complete), UBC, TRU
and the relationships among vertices, edges, and degrees
Prove basic theorems about simple graphs (e.g. handshaking

111 UBC
theorem).

112 |Explain the computer representation of graphs. TRU
Convert between adjacency matrices / lists and their

113 . UBC
corresponding graphs.

114 |Determine whether a given graph is a subgraph of another. UBC

115 |Discuss the complexity of the Travelling Salesman problem TRU

116 |Explain Dijkstra's Algorithm for the Shortest Path in a graph TRU

117 |Discuss the Big O of Dijkstra's algorithm TRU
Apply object oriented and modular design techniques to an

118 S . . SFU
application problem to design a software solution.
Select the most appropriate data structure (lists, stacks,

119 |queues, trees, hash tables, heaps, priority queues) for a SFU, UBC
solution to a problem.
Implement an application design, including an implementation

120 |an appropriate data structure (lists, stacks, queues, trees, SFU
hash tables, heaps, priority queues).

121 Analyze [imperative-language] programs and functions to UBC

determine their algorithmic complexity.

Algorithms + Data Structures (Computer Science)
Summary Learning Objectives (with cross-reference to Enabling Learning Objectives)
Prepared: December 12, 2008 (@ University of the Fraser Valley)

Set of sorting algorithms Ss (in something of a partial-order indicating importance): selection, insertion, bubble, merge, quicksort, heapsort.

Set of data structures Ds (in something of a partial-order indicating importance): stacks, lists, queues, binary trees, binary search trees, hash tables,
heaps, priority queues, graphs.

Set of operations Ops on data structures: insertion, deletion, traversal, search.

Summary Learning Objective Enabling cross-reference
Illustrate / trace the operation of sort s from Ss. 48 i 52 i 56 i 60 i 64
Choose / justify a sort given a specific problem. 68 | 70 i

Compare / contrast tradeoffs of sorting algorithms

1418 149 i 53 i 57 i 61 : 65: 68 i 69 : 85
s, t, and u from Ss. i : i : i i i i i

Implement (apply) and modify sorting algorithm s

51 {54 :55:58:59:62:63:66:67
from Ss. :

Illustrate / trace the search operation on data

structure d from Dd. 20 i

Compare / contrast tradeoffs of search algorithms s

and t. Hmm H_.NWAAW

Demonstrate mathematical literacy in sets,

Lo iigisigigiogiogel
functions & mathematical symbols i IR R R 18]

1014102* Hom* A*.u Bm.%\wﬂ.m.nwv @.w o.m_mnmn_ to a U._\oc_m.:,_v

Given a Big O expression, state what it implies 8 9 | 10 12 14 18 | 85

(also: possibly big Omega, big Theta)

Categorize an algorithm / data-structure operation

into common complexity classes {derive function?} o o

7 9 11 18 31 32:34:49;50; 535457 58

65 : 66 i 75 82 i 83 i 92 i 93 i121
Given a specific problem, use {resource i H i i
requirements | complexity classes} when 3
comparing & contrasting different solutions.

121315 18 | 85

Illustrate / trace / explain operation op from Ops on
data structure d from Ds.

16303336 40 41 71i 76818687 88 89 106107

108:112:113
Choose / justify a data structure given a specific
program {? using analysis} {? +complexity 17 2529 i 40 i 41 i42:43i44:i73i78:81:82i86:i90:91
110: 119

Implement (apply) operations from Ops on / for

data structure d from Ds. 19:21:22:23:24:29:32{35{37;{38;{39:{74i{79{120;

Illustrate / trace / explain recursive solutions. 26 i 46 i 47 i +{tree operations}

Implement recursive solutions to appropriate
problems.

+{tree operations}

Prove properties about {algorithms | programs}
that use loops and recursion.

2728 2993 94} 95 981100104}

Computer Architecture (Computer Science)
Enabling Learning Objectives
Prepared: October 23, 2009 (@ University of the Fraser Valley)

Original Sources:
List 1: ACM/IEEE 2001 "Architecture and Organization" learning outcomes
List 2: UBC CPSC 213

Other feedback: Opinions on inclusion sought from UBC-V and SFU-B (i.e., institution's mention
indicates coverage in years 1 & 2).

Other

Enabling Learning Objective feedback

1 Describe the progression of computer architeture from vacuum Yes SFU
tubes to VLSI.
Demonstrate an understanding of the basic building blocks and

2 |[their role in the historical development of computer Yes SFU, UBC
architecture.

3 c.mm an:m:\dw:nm_ expressions to m_mmn.zcm. the functions of Yes SFU, UBC
simple combinational and sequential circuits.

4 |Design a simple circuit using the fundamental building blocks. Yes SFU, UBC

5 mx_o_mi the reasons for using different formats to represent Yes SFU, UBC
numerical data.

6 Explain how negative integers are .mﬂo_,mn_ in sign-magnitude Yes SFU, UBC
and twos-complement representation.

7 |Convert numerical data from one format to another. Yes SFU, UBC

8 Discuss how ﬁ_xmn_.._m:@.% number representations affect Yes SFU, UBC
accuracy and precision.

9 [Describe the internal representation of honnumeric data. Yes SFU, UBC

10 Describe the internal representation of characters, strings, Yes SFU, UBC
records and arrays.

11 mx_u_m_: .n:m. oams_N.m.n_o: o_ﬂ.ﬁ:m classical von Neumann machine Yes SFU, UBC
and its major functional units.

12 Explain how an ._sm.n:_n:o: is executed in a classical von Yes SFU, UBC
Neumann machine.

Summarize how instructions are represented at both the

e machine level and in the context of a symbolic assembler. M SFU, UBC
Explain different instruction formats, such as addresses per

- instruction and variable length vs. fixed-length formats. ves Siftly TEe

15 |Write simple assembly language program segments. Yes SFU, UBC

16 Demonstrate 3.0<< fundamental :_@:-_m<m._ programming Yes SFU, UBC
constructs are implemented at the machine-language lvel.

17 Explain how subroutine calls are handled at the assembly level. Yes SFU, UBC

18 |Explain the basic concepts of interrupts and I/O operations. Yes SFU, UBC

19 |Identify the main types of memory technology. Yes SFU, UBC

20 |Explain the effect of memory latency on running time. Yes SFU, UBC

21 Explain the use of memory hierarchy to reduce the effective Yes SFU, UBC
memory latency.

22 |Describe the principles of memory management. Yes SFU, UBC

23 |Describe the role of cache and virtual memory. Yes SFU

24 Explain the workings of a system with (simple) virtual memory Yes SFU, UBC
management.

25 Explain how interrupts are used to implement I/O control and unsure SFU
data transfers.

26 |Identify various types of buses in a computer system. unsure SFU

27 |Describe data access from a magnetic disk drive. unsure SFU, UBC

28 [Compare the common network configurations. unsure

29 |Identify interfaces needed for multimedia support. unsure
Describe the advantages and limitations of RAID architectures.

30 unsure

31 |Compare alternative implemention of datapaths. No SFU
Discuss the concept of control points and the generation of

32 |control signals using hardwired or microprogrammed No SFU
implementations.
Explain basic instruction-level parallelism using pipelining and

33 . No SFU
the major hazards that may occur.

34 Discuss the concept of parallel processing beyond the classical No

von Neumann model.

Describe alternative architectures such as SIMD, MIMD, and

3> lviw. No
Explain the concepts of interconnection networks and
36 . . No
characterize different approaches.
Discuss the special concerns that multiprocessing systems
37 |present with respect to memory management and describe No
how these are addressed.
38 [Describe superscalar architectures and their advantages. No
39 |Explain the concept of branch prediction and its utility. No
40 |Characterize the costs and benefits of prefetching. No
Explain speculative execution and identify the conditions that
41 (7. No.
justify it.
Discuss the performance advantages that multithreading can
42 |offer in an architecture along with the factors that make it No UBC
difficult to derive maximum benefits from this approach.
43 [Describe the relevance of scalability to performance. No UBC
Explain the basic components of network systems and
44 distinguish between LANs and WANSs. unsure ——
Discuss the architecture issues involved in the design of a
45 unsure uBC
layered network protocol.
Explain how architectures differ in network and distributed
46 unsure
systems.
Discuss architectural issues related to network computing and
47 unsure

distributed media.

Software Engineering (Computer Science)
Summary Learning Objectives (with cross-reference to Enabling Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Summary Learning Objective
Complete a team-based project using appropriate
SE tools and technologies (Bloom's: Synthesis)

Enabling cross-reference

Demonstrate comprehension of software-
engineering jargon including techniques and best
practices, e.g., refactoring, reusability, product
(Bloom's: Knowledge)

1 ’W and implicit in most others

Select, with justification, an appropriate set of tools
to support the development of a particular software
product. (Tools and Environments)

10

11 | 12

31

32:33:40:i42i71

Display competence with enabling technologies for
software engineering, e.g., "make", OS, IDE,
browser (Tools & Environments; Bloom's: Apply)

Demonstrate through involvement in a team project
the central elements of team building and team
management. (Software Engineering Management)

35

36

37 44

Apply common methods for elicitation and analysis
to produce a set of software requirements for a
medium-sized software system (Requirements).

53

54

mmw 56

59

Create and specify the software design for a
medium-sized software project using a software
requirement specification (e.g., structured or object-
oriented) and appropriate design notation.
(Software Design & Quality)

1

5

16 |

17

18 | 19

22

23

24

25

43

69

Evaluate different designs prepared as solutions to
the same problem. (Software Design & Quality)

28

29

Explain the software life cycle and its phases
including the deliverables that are produced.
(Software Development Process & Lifecycle)

41

42

Select, with justification, the software development
models and process elements most appropriate for
the development and maintenance of a particular
software product (Software Development Process &
Lifecycle)

Quickly construct high-quality software to realize a

K design (Construction)

2:3i4:5:6:7:8i9:10;11i12; 13 45}

Test code with unit tests, system tests, and user

L tests. (Testing)

60 i 61 62 63:64:66:67:68:69:70:

Discuss issues arising in software deployment, :
B maintenance and support. (Production -- 30 46 { 48 i 49 i
Deployment, maintenance, support)

Software Engineering (Computer Science)
Enabling Learning Objectives (with cross-reference to Summary Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Enabling Learning Objective Original source Summary cross-reference
1 |Define software engineering, and describe its history. SFU
Implement a software system. (Moved toSummary Objective
2 K) SFU
Implement design through coding. (Moved to Summary
3 . BCIT
Objective K)
Quickly implement high-quality code from a design. (Moved to
4 L UBC
Summary Objective K)
Break up implementation work into units for parallel
5 | . UBC
implementation.
6 [Explain several implementation philosophies. UBC
7 |Improve code quality and productivity by using software tools. UBC
8 |Coordinate implementation efforts using a code repository. UBC
9 |[List the typical operations provided by an SCM tool. UVic
Describe various aspects of software configuration
10 SFU
management.
11 Justify the use of software-configuration management (SCM) UVic K
tools such as Subversion, CVS, etc.
12 Identify and eliminate problems using an issue tracking UBC K
system.
13 |[Design and apply code standards. SFU G H
14 |Explain and apply good design principles. UBC G H
15 |Explain and apply common design patterns. UBC G H
16 Select m:.n_ apply appropriate a.mm_@.s patterns in the BCIT, UBC, ACM/IEEE G H
construction of a software application.
17 |Recognize basic architectures. UBC G H
18 |Design and specify a system's architecture. SFU G H
19 Design and specify the class-level structure of a software SFU G H
system.
20 |Identify the relationships between classes. BCIT G H

Extend the analysis classes to represent the design use cases

21 and identify specific object instances. BCIT
Add/modify relationships between classes and objects to

22 ; BCIT
further extend the design.
Represent analysis and design models using use case,

23 . . , BCIT
sequence, collaboration, class, and state machine diagrams.

24 |Design a project with UML. UBC

25 [Design a project in a group setting. UBC
Describe the qualities of a good software system and

26 . SFU
understand their value.
Discuss the properties of good software design including the .

27 . . UVic
nature and the role of associated documentation.

)8 m<m_cmﬂ the mcm.__g of alternative software designs based on ACM/IEEE
key design principles and concepts.

29 [Measure the size of a project. (Okanagan)

30 [Use feedback from implementation to refine design. BCIT

31 Analyze and evaluate a set of tools in a given m_‘mm.odn software UVic, ACM/IEEE
development (e.g. management, modeling, or testing).
Demonstrate the capability to use a range of software tools in

32 [support of the development of a software product of medium UVic
size.
Utilize tools to manage and support a software development
team such as software configuration management tools

33 [(version control repositories), project management tool (task SFU
schedulers, meetings) and communication tools (email, shared
websites, instant messaging).
Explain the process by which they would organize the solution

34 |to a medium-sized non-trivial problem involving a group of UVic
programmers.
Apply good project management practices to a software

35 project, such as risk analysis, task/resource scheduling, SFU
human resource management, and continuous progress
monitoring.

36 Identify and resolve common team-related issues such as SFU

communication problems and decision making.

G
G
G
G
G
G
G
G
G
C
C

0

37 |Review and evaluate team member performance. SFU
Explain the software life cycle and its phases including the

38 |deliverables that are produced. (Moved to Summary Objective UVic, UBC
I)
For each of several software project scenarios, describe the

39 project's place in the software life cycle, identify the particular UVic
tasks that should be performed next, and identify metrics
appropriate to those tasks.
Identify the principal issues associated with software evolution .

40 . . . UVic
and explain their impact on the software life cycle.

a1 mx_u_m_s the risks of skipping or reducing a phase of the UBC
lifecycle.
Recognize the types of tools that are used in each phase (of

42 : UBC
the software life cycle).
Compare the traditional waterfall development model to the

43 |incremental model, the agile model, the object-oriented model, UVic, SFU
and other common models.
Apply a software life cycle model of Object-Oriented paradigm,

44 |and its methodology to a multi-member software development SFU
project.

45 [Create user documentation. SFU

46 [Discuss the challenges of maintaining software. UVic

47 Discuss issues arising in software system deployment, SFU
maintenance, and support. (Moved to Summary Objective M)

48 Discuss the n:m__m:mm.m of .BmSSSSQ legacy systems and the ACM/IEEE
need for reverse engineering.

49 Identify weaknesses in a given simple n_mm_mP and highlight ACM/IEEE
how they can be removed through refactoring.
Apply key elements and common methods for elicitation and

50 analysis to produce a set of software requirements for a UVic
medium-sized software system. (Moved to Summary Objective
F)

51 [Argue for the need for requirements. UBC

52 Eliciting, analyzing, specifying, and verifying functional and SFU

non-functional requirements.

53 [Describe several types of requirements. UBC

54 |Elicit requirements from a client. UBC

55 |Identify and complete use cases. BCIT

56 |Refine use cases to serve as foundation for design. BCIT

57 |Identify classes based on use cases. BCIT

58 [Recognize good and bad requirements. UBC

59 [Explain the typical difficulties of technical communication. UBC

60 |Construct a software test plan. BCIT, UVic

61 D\mm.ﬁP m,\.m_cmﬁm and justify, and implement a test plan for a UVic, BCIT
medium-size code segment.
Distinguish between the different types and levels of testing

62 |(unit, integration, systems and acceptance) for medium-size UVic
software products.

63 |[Create test cases. BCIT,UVic
Undertake, as part of a team activity, an inspection of a .

64 . ; UVic
medium-size code segment.
Test code with units tests, system tests, and user tests. .

o2 (Moved to Summary Objective L) UBC, BCIT, UVic

66 |Explain basic testing terminology. UBC
Recognize common testing frameworks employed in the

67 |. UBC
industry.

68 Verifying and validating all artifacts created during the process. SFU
Testing the resulting system through unit testing, integration

69 i . SFU
testing, system testing, etc.

70 |Describing user acceptance testing. SFU
Describe the role that tools can play in the validation of .

71 UVic
software.

72 |Write test scripts. BCIT, UVic

F FmMmMTMMTMTTMm

Hardware (Information Systems / Information Technology)
Enabling Learning Objectives
Prepared: October 23, 2009 (@ University of the Fraser Valley)

Wording for all learning outcomes prepared by working group at UFV meeting.

Enabling Learning Objective Additional Comments
Identify the latest trends and development in microcomputers. Overall

Describe and classify the components of computers and
peripherals.

Describe, classify and identify how the various PC components
3 |are connected and they communicate to accomplish different
tasks

Describe the construction and operation of the Central
Processing Unit in terms of instruction execution.

Explain the structure and operation of hierarchy of memory in
terms of program execution.

Explain how machine language provides the foundation for all
programming languages.

7 |Compare different CPU and PC architectures.

Install, maintain and troubleshoot basic computer hardware
8 |and software in a LAN environment, demonstrating basic
problem solving methodologies.

Use the Internet to assist in solving hardware problems and
installing software and firmware updates from the Internet.
10 |Format, partition and reorganize a disk.

Describe how disk storage works, and explain the factors that

- influence performance.

Identify and understand the basic hardware and software Also OS
12

necessary to connect the PC to a network.
13 Explain the need for and the technologies available for backup

and restore.

Describe how video cards and monitors work; determine the

14 |settings of both; manipulate the parameters affecting
performance.

15 |Describe how data is stored to and retrieved from optical disk.
Describe how data is stored to and retrieved from flash RAM

16 |devices such as USB memory, SD cards and other solid state
memory technologies.

17 |Describe how audio devices work in a personal computer.

18 Install and configure a Windows Server and networking

Services.

oS

Web Learning (Information Systems / Information Technology)
Summary Learning Objectives (with cross-reference to Enabling Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Summary Learning Objective Enabling cross-reference
Given a problem, suggest an internet infrastructure :
suitable to solve the problem and justify your 1:2:3:4:5:6:7 :i57i61:62:64:66

choice.

Use services for communication and to access
internet-based resources.

Apply copyright law, ethics and internet law to a
website.

Create a dynamic website that incorporates a user

. . 16117221 23i 2412526127281 290i30i31:32{33i39
friendly design. : : : : : : : : H H H : H H

42 : 43 i 60 i 68

Create a dynamic website that incorporates
XHTML/CSS.

56 : 57 : 58 . 60 | 63
Create a dynamic website that incorporates a :] ; :
scripting language (client- or server-side).

57 i 58 :59:{60:61:62:63:65
Create a dynamic website that incorporates : i
generally accepted standards.

Create a dynamic website that incorporates web

standards. B 42 | 43| 60 : 67

Create a secure website that accesses a database. 58 61 62 65

Use an appropriate range of tools to create a
multimedia website.

Nom NHW NNM 25 wpm wmm wum wmm Ao” AHW 42

56 : 67 . 68

Web Learning (Information Systems / Information Technology)
Enabling Learning Objectives (with cross-reference to Summary Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Original source key:
LC is for Langara College
OC is for Okanagan College

Enabling Learning Objective Original source Summary cross-reference

1 Describe the major hardware and software components and LC
how they are related to the internet infrastructure

2 |Describe the roles and importance of TCP/IP in the Internet. LC

3 |Describe how the DNS system works. LC
List several of the different top-level domains and describe

4 L . LC
their intended audiences.
List several application level protocols (e.g., POP, SMTP, FTP,

5 LC
HTTP).

6 Provide examples of how and where they get used on the LC
Internet.

7 |Compare client/server and peer-to-peer architectures. LC
List and explain several of the considerations when a company

8 |hosts a web site (e.g., amount of disk space, monthly transfer LC
limits, etc.).
Create W3C valid XHTML web pages using headings,

9 [paragraphs, logical formatting, lists, tables, images, hyperlinks LC
and character entities.

10 Differentiate between an absolute and a relative URL and be LC
able to construct the correct one at the correct time.

11 . , . LC
Use the XHTML tags div and span to create sections for styling.
Create tag, pseudo-class, class and id selectors using basic

12 |properties (e.g., font, color, text-decoration, text-align, LC
background, list-style-type, etc.).

13 Place properly formed CSS rules in an external or internal style LC
sheet or as an inline style.

Analyse a set of CSS rules for the cascade effect and render

14 the resultant styling to a webpage. e

15 [Describe the CSS box model. LC
Use the CSS box model and positioning properties to create a

16 |web page with either 2 or 3 columns, a mast head and a LC
footer.
Compare and contrast various web page layouts: liquid, fixed

17 .) LC
and jello/elastic.
Describe the kinds of pictures that are best stored in raster

18 LC
and vector formats.
Describe the characteristics of raster and vector formats,

19 |including typical filename extensions, amount of transparency LC
permitted and type of compression used.
Describe how resolution and pixel depth (8-bit indexed, 24-bit

20 |[RBG and 8-bit grayscale) affect the appearance of a raster LC
image and its stored size on disk.
Use an image manipulation program to perform the following
actions: scaling, rotating, cropping, down sampling, repairing
an image by erasing an object, removing the background from

21 LC
a raster image, converting between the various file formats,
creating a composite using layers and layer masks, and
creating simple GIF animations using layers.

22 |Describe the RGB, HSV and CMYK color models. LC
Select colors based on the color harmonies: monochromatic,

23 . LC
complementary, analogous, and triadic.
Describe the five basic webpage design principles (contrast,

24 e . S . LC
repetition, alignment, proximity, communicability).

75 Design a web site using the five basic webpage design LC
principles.

26 Critique a web site using the five basic webpage design LC
principles.
Design a small web site for a mobile device taking into account

27 |the limited screen resolution, colour depth, bandwidth, and LC

reduced keyboard.

Describe the characteristics of exact and ambiguous site

28 |organizational schemes, along with their sub-schemes, giving LC
examples of where they are used appropriately.

29 |Select an appropriate organizational scheme for a web site. LC

30 Compare two web sites according to their organizational LC
scheme

31 [Describe the various kinds of site organizational structures. LC
Identify on a site the primary and secondary navigation

32 . . Y LC
elements (e.g., breadcrumb trails, site maps, and site index).

33 Create a web site with primary and secondary navigation LC
elements.
Use a web authoring tool (eg Dreamweaver) to maintain a

34 . LC
website.

35 Create and use authoring tool (eg Dreamweaver) templates to LC
create a website.

36 Describe what a search engine is and how to provide it queries LC
using AND, OR, NOT and exact phrases.
List and use several search engine optimization techniques to

37 |. " o LC
improve a website’s ranking in the search results.
Analyse a site’s log file to determine when visitors arrive, from

38 : . LC
where, and which pages they view.
Describe how cookies can be used in a web site to customize

39 . LC
the appearance for return visitors.
Use an available tool to create a simple two dimensional

40 . . . : : . LC
animation using multiple layers and object tweening.
Describe the fundamental characteristics and uses of e-

41 |commerce, blogs, wikis, content management systems, and LC
RSS feeds.
Use an available content management system to create a

42 ; LC
website

43 Create a secure e-commerce web site using an appropriate LC
existing payment processing service

44 Discuss the legal issues of copyright, trademarks, hate LC

literature, libel, jurisdiction and the web.

Use a scripting language to write several programs to solve

45 LC
problems

46 |Insert a scripting I'anguage program into an XHTML page. LC

47 |Use built-in operators, variables, literals to create expressions. LC

48 [Learn how to use scalar, array and hash variables in a script. OC, LC

49 |Use [the scripting language's] string manipulating features. 0OC

50 Describe the following constructs - selection, repetition, 0C, LC
subprograms.

51 [Use both selection structures - if, switch. LC

52 [Use all repetition structures — while, for, do. LC

53 |Create a function to solve a problem. LC

54 [Distinguish between void and value returning functions. LC
Use all XHTML form tags (buttons, text, textarea, radio,

55 LC
checkbox, select).

56 Describe the Document Object Model (JavaScript? Object LC
Hierarchy) and properties and methods of form elements.

57 Use events and event handlers to create an interactive web LC
page.

58 [Describe the process of validating and submitting form data. LC

59 |Save data to a data file and a database. 0C

60 |Create a dynamic web site LC

61 Explain the role of a CGI script in creating interactive Web oC
sites.
Write a small CGI script to dynamically create a web page in

62 |response to a request, collect data from a Web page visitor or LC, OC
send an email

63 |Use server side includes to dynamically create a web page. LC

64 _ummnlvm some of the major historical events in the evolution (added by FPM)
of the internet.

65 >_u_.u_< the appropriate OS security and permissions to allow a (added by FPM)
script to execute.

66 Describe some of the encryption techniques used on the (added by FPM)
Internet.

67 |Use SSL tools to create a secure connection. (added by FPM)

68 |Create a video or audio podcast. (added by FPM)

m TMTMTMTMT M MMM M

A
E
F
D
A

p

Information Management (Information Systems / Information Technology)
Summary Learning Objectives (with cross-reference to Enabling Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Summary Learning Objective Enabling cross-reference
Correctly use terminology relevant to information]

1 2 3 4 5
management.

Describe organizational needs relating to data

acquisition, use, retention and disposition. 9 / 9 J B L4243

Describe different database models and

differentiate between them. 20 i 21 22 23 24 49

Model a relational database. 30 i 31:i35:36: 37 : : :
Design a normalized database. 25 i 26 : 27 i 28 i 29 i 33 i 34 : 35 36
Write syntactically correct and accurate SQL 111121314 15 | 16

statements.

Embed relational technology in a programming or

) 18 i 19 49 50 i 51
web environment.]] i :

Information Management (Information Systems / Information Technology)
Enabling Learning Objectives (with cross-reference to Summary Learning Objectives)
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Original sources of enabling learning outcomes (except where noted in the comments) are:
ACM/IEEE 2001 CS Curriculum Proposal, "Information Management" section
ACM 2008 Curriculum Proposal, "Information Management" section

| # |Enabling Learning Objective

Differentiate and use key terms such as: information, data,

1 |database, database management system, metadata, data
mining.

Explain the role of data, information, and databases in
organizations.

3 |Explain how data storage and retrieval has changed over time.
Explain the advantages of a database approach compared to
traditional file processing.

Identify and explain the general types of databases: personal,
workgroup, department, enterprise.

Explain how the growth of the Internet and demands for

6 |information for users outside the organization (customers and
suppliers) impact data handling and processing.

Define data quality, accuracy and timeliness, and explain how

Summary cross-reference

7 . iy o
their absence will impact organizations.
Describe mechanisms for data collection and their implications
8 . .
(automated data collection, input forms, sources).
9 Explain basic issues of data retention, including the need for
retention, physical storage, security.
10 Explain why data backup is important and how organizations
use backup and recovery systems.
11 Formulate and test SQL queries using SELECT FROM WHERE

ORDER BY blocks.

Recognize the need for logical operators, set operators,

12 |UNION, DISTINCT, LIKE, and BETWEEN operators, and use
them appropriately.

Formulate and test queries using aggregate functions with

e GROUP BY HAVING clause.
Formulate and test queries using use sub-queries, VIEWS and

14 |, s : . .
joins in combinations with the options listed above.
Format output (header, footer, totals, subtotals etc.) reports

15 |using SQL options and post-processing features of
environment like SQL*Plus.
Declare appropriate data types, sizes and constraints on

16 elements and their combinations including DATE and TIME
types, create TABLE/VIEW with SELECT AS, and use INSERT,
UPDATE and DELETE options.

17 |Demonstrate an understanding of XPath and XQuery.

18 |Formulate and test queries using query by example.

19 |Use embedded SQL queries.

20 |Give a brief history of database models and their evolution.
Describe the features of the relational model including

21 . . .
relations, tuples, attributes, domains and operators.
Demonstrate select, project, union, intersection, set difference,

22 |and natural join relational operations using simple example
relations provided.
List similarities and differences between object-oriented

23 |database concepts and features and those of relational
databases.

24 Explain the relationship between functional dependencies and
keys and give examples.

25 Explain how having normal form relations reduces or
eliminates attribute redundancy and update/delete anomalies.

26 |Normalize a set of relations to at least fourth normal form

27 |Explain the primary key requirements for relational integrity.

28 |Define and explain the need for referential integrity.

29 |Give examples of user-defined integrity constraints.

30 Describe and interpret Entity Relationship or UML data
modeling diagrams.

31 Create simple Entity Relationship or UML data modeling

diagrams.

Delete?
Suitable?
Suitable?

Suitable?

FPM working group
FPM working group

32 [Describe and interpret Enhanced Entity Relationship diagrams.

33 [Select appropriate business rules for a given scenario.

34 Design and defend your design for a relational database for a
given scenario.

35 Describe the relationship between a logical model and a
physical model.

36 Select a database pattern or standard model that effectively
corresponds to a given scenario.

37 |[Explain the use of CASE tools in data modeling.

38 |Describe data integration.

39 [Describe meta-modeling.

40 [Describe a data warehouse, its basic structure, etc.

41 Distinguish between data administration and database
administration.

42 Apply ethical principles to database design, development and
use.

43 |[Explain the concept of database security.

44 |Explain the concept of backup and recovery.

45 Distinguish between homogeneous, heterogeneous and
federated distributed databases.

46 Explain the concept of replication as it pertains to distributed
databases.

47 Distinguish between horizontal and vertical replication as it
pertains to distributed databases.

48 |Describe a client-server database architecture.

49 |Describe an n-tier database architecture.
Explain the role of ODBC, JDBC and XML in the implementation

50 . :
of an n-tier database architecture.

51 |Describe the concept of web services and the role of SOAP.

55 Demonstrate an understanding of online analytical processing

and data warehouse systems.

Delete.
Design?
FPM working group

Delete.
Delete.
Delete.

FPM working group

Delete.
Delete.
Delete.
Delete.
Suitable?

Suitable?
Delete.

Networks (Information Systems / Information Technology)

Enabling Learning Objectives
Prepared: October 22, 2009 (@ University of the Fraser Valley)

Original source for all learning outcomes are the:
"Network Centric" category of the ACM/IEEE 2001 CS Curriculum Proposal
"Networking" items from the ACM 2008 IS/IT Curriculum proposal

As each enabling learning objective corresponds to a single summary objective, the first occurrence of the summary
objective will contain the entire text of that objective.

Enabling Learning Objective
Manage networked accounts

Enhance network performance

Protect servers from data loss

Discuss the benefits of network management and planning

u |[AWIN]| =

Develop networking standards, policies, procedures and
documentation

()]

Describe the main challenges faced in a modern office
environment using networks

Troubleshoot a network following a structured approach

Discuss the types of specialized equipment and other
resources available for troubleshooting

Configure IPX access lists and SAP filters to control basic
Novell traffic.

10

Enable the Novell IPX protocol and configure interfaces.

11

Monitor Novell IPX operation on the router.

12

Apply basic data communication theory to the performance
analysis of networks.

13

Explain the OSI reference model

14

Explain the OSI reference model's layers and their

relationships to networking hardware and software

A
A
A
A
A
A
A
A

> >»>» >

Summary cross-reference
Manage a network for optimal performance, and
troubleshoot the network.

Know the major communication architectural
models.

Discuss the layered architecture of protocols, and describe

15 o i
common protocols and their implementation

16 Describe the different major network architectures, Compare
and contrast them.

17 Outline the limitations, advantages, and disadvantages of each
standard or architecture

18 Define network services

19 Discuss the differences between centralized and client/server
computing

20 |Define the client/server networking environment

21 [Discuss the basics of Web-based computing environments

22 Describe the basic concepts associated with wide area
networks (WANSs)

23 Describe how to use the Internet for a private connection using
VPNs

24 |Describe the benefits of virtual LANSs.

75 Discuss the criteria for Selecting the Right Type of Network

26 |[Discuss the criteria for Selecting a Topology

27 Describe the basic steps required for network operating system
installation

28 |Install and configure network applications

29 [Create a network security plan

30 Describe WAN protocols, and software and hardware
technologies to build WANSs.

31 [Design, build, and maintain a small local area network

32 |Describe the process of setting up peer-to-peer to networks.

33 List commands to configure Frame Relay LMIs, maps, and
subinterfaces.

34 List commands to monitor Frame Relay operation in the router.

35 Describe the differences between Local and Wide Area

Networks

0

0O 00 0O

C
C
D
D
D
D
D
D
D
D
D

Identify specific architectural features in
networks.

Construct networks ranging from small Lans to
large WANSs.

Know the definitions for a broad range of
network terms.

Provide definitions for basic networking terms: Clients, Peers,

36 |Servers, the Network Medium, Network Protocols, Network
Software, Network Services
Describe the basic Network Types: Peer-to-Peer, Server-Based,

37 Storage-Area Networks (SANs), Personal Area Networks
(PANs), Hybrid Networks, Server Hardware Requirements,
Specialized Servers
Define and understand technical terms related to cabling,

38 |. . . i
including attenuation, crosstalk, shielding, and plenum
Describe a range of network topologies

39
Describe the basic types of Hubs: Active Hubs, Passive Hubs,

40 .
Hybrid Hubs

a1 Identify three major types of network cabling and of wireless
network technologies

42 Decide what kinds of cabling and connectors are appropriate
for particular network environments
Explain how network adapters prepare data for transmission,

43 |accept incoming network traffic, and control how networked
communications flow
Explain how larger networks may be implemented using

44 |devices such as repeaters, bridges, routers, brouters,
gateways, and switches

45 Configure routers to setup different types of LANs and WANs
using LAN and WAN protocols.

46 Describe the advantages and methods of network
segmentation.

47 [Name and describe two switching methods.

48 |Describe full- and half-duplex Ethernet operation.

49 |[Describe the features and benefits of Fast Ethernet.

50 Explain and describe the characteristics of various transmission

media.

Know the different network devices,
transmission media and topologies for
combining them into networks.

Contrast base band and broadband transmission technologies

51

52 |Describe wireless transmission techniques

53 Describe rudimentary signaling technologies for mobile
computing

54 |Explain the IEEE 802 networking model and related standards

55 Describe the function and structure of packets in a network,
and analyze them

56 [Explain the function of protocols in a network (e.g., TCP/IP

57 Describe various channel access methods, Compare and
contrast them.

58 Discuss the different types of carriers used for long-haul
network communications

59 Identify virtual LANs, LAN switching, Fast Ethernets, Frame
Relay, ISDN networking.

60 Identify the uses, benefits, and drawbacks of advanced WAN
technologies such as ATM, FOOI, SONET, and SMDS

61 |List the required IPX address and encapsulation type.

62 |Describe network congestion problem in Ethernet networks.

63 Distinguish between cut-through and store-and-forward LAN
switching.

64 Describe the operation of the Spanning Tree Protocol and its
benefits.

65 Differentiate between the following WAN services: LAPB,
Frame Relay, ISDN/LAPD, HDLC, PPP, and DDR.

66 |Recognize key Frame Relay terms and features.

67 Identify PPP operations to encapsulate WAN data on Cisco
routers.

68 |State a relevant use and context for ISDN networking.

69 Identify ISDN protocols, function groups, reference points, and
channels.

70 |Describe Cisco's implementation of ISDN BRI

71 Explain and identify key protocol information given samples of

captured packets.

Know a wide variety of data communication
protocols and know the advantages and
disadvanteges of each one.

Describe today's data communications industry as a system of

72 |.
interconnected components.

73 Recount network adapter enhancements that can improve
performance

74 |Implement the LAN protocols. ???

75 |Implement TCP/IP. ???

76 [Understand the standards governing network architectures

77 |Understand the various networking software components

78 |Discuss interconnectivity issues in a multivendor environment

79 Define the various options to implement a multivendor network
environment

80 Understand the various alternatives used in network
communications

81 Explain the role of driver software in network adapters

82 Explain the operation fundamentals of network operating
systems

83 Provide a basic overview of networks, at the highest level.

(Recommend removal)

(Recommend removal)

(Recommend removal)
(Recommend removal)
(Recommend removal)
(Recommend removal)
(Recommend removal)

(Recommend removal)

(Recommend removal)

Know how a network OS works and be able to
install and configure it.

Provide a basic overview of networks, at the
highest level.

	Computing Education Flexible Pre-Major Analysis Final Report Feb 10 2010.pdf
	final_report_appendix.pdf
	intro_enabling
	algorithms_enabling
	algorithms_summary
	architecture_enabling
	seng_summary
	seng_enabling
	hardware_enabling
	weblearning_summary
	weblearning_enabling
	information_summary
	information_enabling
	network_enabling

