

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 1

Final Report
British Columbia Computing Education Committee

Flexible Pre-Major Analysis Project

December 31, 2009

Project Lead: Dr. Michael Zastre

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 2

Table of Contents
Background and Objectives .. 4

1. The BCCEC .. 4

2. Project Origins .. 5

3. Discipline transfer patterns ... 6

4. Project Objectives ... 6

5. Project Team ... 7

Problem Statement .. 8

1. Traditional Articulation, and Rationale for an FPM... 8

2. Learning Outcomes as part of the Analysis Project.. 10

3. A word of caution about Learning Outcomes... 11

Process .. 13

1. Plan of meetings.. 13

2. Sources and Resources.. 13

Findings .. 15

1. Learning outcomes (LOs): Enabling vs. Summary... 15

2. Possible mechanisms for administration of the FPM ... 15

3. Several other open questions .. 16

Recommendations... 18

Some additional comments ... 20

Acknowledgements... 21

Reference Works... 22

Appendices.. 23

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 3

Executive Summary
From February 2008 to December 2009, the British Columbia Computing Education
Committee (BCCEC) undertook a Flexible Pre-Major (FPM) Analysis project. The
project subcommittee consisted of a representative sample of institutions in BC which
offer Information Technology and Communication (ITC) programs (i.e., Computer
Science, and Information Systems / Information Technology).

A distinguishing feature of this project was our decision to use learning outcomes as the
mechanism for describing a Flexible Pre-Major. This is different from some other
approaches by different articulation committees. Our decision was that approaches to the
delivery of CS and IS/IT programs can differ significantly between institutions. While
students emerging after two years from CS programs at different institutions may have
achieved the same learning outcomes, the courses themselves do not necessarily easily
articulate using the traditional course-by-course transfer model (i.e., 80% overlap in
topics between courses may not always exist).

The project committee oversaw the preparation of eight lists of learning outcomes. Four
of these are for Computer Science (CS) topic areas, and four are for Information Systems
/ Information Technology (IS/IT) topics areas. Nearly all lists consist of “summary
learning outcomes” and “enabling learning outcomes”. Our intent is that an institution
will compare their own program’s learning outcomes with the FPM’s summary learning
outcomes, and a suitable degree of matching of outcomes would indicate the institution is
eligible to participate in the BCCEC FPM.

At its Fall 2009 meeting, members of the BCCEC considered the work of the project
committee and determined that a CS FPM and an IS/IT FPM are indeed feasible. The
project committee therefore recommends the following be considered by participants in
the subsequent implementation project, amongst other issues and requirements normally
part of a Flexible Pre-Major Implementation project:

• Revise the existing lists of Learning Outcomes (see the Appendix for these lists)

• Obtain institutional consensus on wording of FPM participation.

• Identify other benefits of work from our FPM studies and share it with others
interested in this work.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 4

Background and Objectives
1. The BCCEC

The British Columbia Computing Education Committee (BCCEC) is comprised of
representatives from Teaching-intensive universities, Research-intensive universities,
Community Colleges and Institutes who deliver either Computer Science (CS) programs
or Information Systems / Information Technology (IS/IT) programs or both. While the
main purpose of committee meetings is to identify and address issues involving
articulation and course transfer amongst participating institutions, much time is also
devoted to discussions of curricular changes and innovations which are driven to some
extent by the steady pace of change in the Information Technology and Communication
(ITC) industry.

These changes are many and various: new computer programming languages; new
hardware platforms (mobile, embedded, server, desktop); the emergence of ubiquitous
networking (wireless, high-speed networks, secure networks); etc. This has not affected
all parts of CS and IS/IT curricula, specifically not those with a more mathematical
emphasis (i.e. discrete mathematics, algorithmic theory). However, a significant
proportion of the curriculum does require constant change, and given an opportunity to
implement such changes there is often a desire by an institution’s educators to introduce
pedagogical innovations that address the learning needs of its students.

Another reason for introducing innovations in course design and delivery has been the
“dot-com bust”. After experiencing huge increases in student enrolment in the late 1990s
resulting in part from the “dot-com boom”, student enrolment numbers dropped
dramatically in the period from 2002 to 2007. (This was a common experience across
North America.) For some BC institutions, the drop in student numbers coincided with
the arrival of new infrastructure and resources that assumed continuous student growth
based on late-1990s trends, along with expectations that certain targets (e.g., numbers of
graduating students) would be met. For other BC institutions, the drop resulted in
program cutbacks and, in some cases, program cancellations. In nearly all CS and IS/IT
programs there existed pressure to find a way to increase student enrolment while
ensuring the degree of student mastery of established learning outcomes was maintained.
Teaching and learning practices yielding high withdraw-drop-fail (WDF) rates were no
longer considered acceptable, and innovations were introduced as a way to help address
the needs of many learners who have an interest and aptitude for the discipline, but for
whom previous pedagogical approaches resulted in failure to complete a course of study.
Although student numbers are now increasing – albeit nowhere near the levels seen
during the “dot-com boom” – the impulse to innovate as a way of improving student
learning is ongoing and continuing at many institutions.

Therefore a goal of the committee is to help institutions find ways in which they can
introduce the innovations they believe necessary while at the same time ensuring students
in those programs do not experience barriers to transfer resulting from such innovations.
These barriers would be caused by the significantly different approaches to CS and IS/IT

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 5

teaching and learning that have been chosen by institutions, along with challenges of
establishing and maintaining course-by-course transfer.

2. Project Origins

A recurring topic at BCCEC meetings over the past several years has been the challenge
of facilitating articulation of courses between institutions that differ in their approach to
first-year instruction. The existence of these differing approaches is not unique to British
Columbia. For example, the ACM/IEEE Curriculum Proposal for Computer Science
[CS2001] describes six different approaches to even the first computing course
(“Imperative First”, “Objects First”, “Functional First”, “Breadth First”, “Algorithms
First”, “Hardware First”). The task force authoring this curriculum proposal tried to
whittle the six approaches down to a single approach, but was unable to do so:

Throughout the history of computer science education, the structure of the
introductory computer science course has been the subject of intense debate. Many
strategies have been proposed over the years, most of which have strong proponents
and equally strong detractors… In the interest of promoting peace among the
warring factions, the CC2001 Task Force has chosen not recommend any single
approach… Given the current state of the art in this area, we are convinced no one-
size-fits-all approach will succeed at all institutions. [CC2001, p. 22]

At our articulation meetings there has been a sense that some courses have articulated
successfully due to the goodwill amongst personalities in the committee despite
significant differences between the courses. Worded differently, some transfer evaluators
not connected with the committee might compare learning outcomes and topics listed in
an “Objects First” course description with those from a “Functional First” course
description and conclude that they were not the same and should not transfer. That such
courses do currently articulate is the consequence of tacit knowledge held by computing
education professionals participating in the BCCEC.

This project has therefore originated from a desire of the committee to make explicit this
tacit knowledge, and to express it in a form that will support articulation activities. A
variety of ad hoc approaches have been explored at meetings, none leading to success.
Our BCCAT System Liaison Person, Neil Coburn, observed that a more extended study
of the problem with an eye to a possible solution framework – in the form of a Flexible
Pre-Major (FPM) – might be considered a suitable BCCAT Transfer Innovations project.
On May 4, 2007 the BCCEC voted to support the submission of a project proposal for a
Flexible Pre-Major Analysis (which we in the BCCEC have termed the “Feasibility
Study”). A proposal was subsequently submitted to the Transfer Innovations Fund, and
the project was approved. Work on the project began in February 2008.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 6

3. Discipline transfer patterns

The BCCEC has observed three main transfer patterns:

a. Students at teaching universities and colleges within university-transfer programs
transfer at some point after one or more years of studies. This is the traditional
pattern of transfer.

b. Students completing certificates and diplomas at colleges and teaching
universities may wish to transfer to a teaching university (if already at a college)
or a research university (if at a college or teaching university) and wish to
maximize transfer credit available from studies pursued in the program they have
completed.

c. Students at research universities and teaching universities who wish to continue
studies at an institution closer to home, usually a college or some other teaching
university.

We have not completed a statistical survey of student movement in our discipline.
However, such a survey of flows between specific institutions could help us determine
which institutions will see the most benefit from an FPM.

4. Project Objectives

There were two primary objectives/outcomes for the project as set out in our original
proposal.

The first objective was to determine if a Flexible Pre-Major could be constructed on the
assumption that students achieve similar learning outcomes after two years of instruction
whether in the transfer program of a sending institution or within the lower-level of a
receiving institution’s program (and assuming, of course, that the institutions participate
in the Computing Education FPM). If a list of such outcomes could be produced, and if it
would be feasible for an institution to compare its courses with outcomes on this list, then
we would deem an FPM to be feasible. As with other FPMs in the province (such as
Music and Sociology & Anthropology) the focus here is on discipline-specific material;
differences amongst institutions in their handling of English requirements,
complementary studies, SFU’s “WQB” requirement, science credit, etc. would not be
addressed by our proposal.

The second objective was to prepare the details for a process by which the FPM could be
administered. This would include a mechanism used by institutions to join an FPM. Also
needed would be a method for the BCCEC to periodically review the description of the
FPM (i.e., outcomes to be added, or removed, or modified, etc.)

Another objective not made explicit in the project proposal was that we would investigate
the feasibility of two separate FPMs – one for CS programs, and one for IS/IT programs.
Despite some overlap in material (e.g., introductory programming), and despite the fact
the same institution may offer both programs and even have instructors teaching courses

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 7

in both programs, these two kinds of Computing Education have enough differences with
respect to student learning outcomes that two groups of learning outcomes would be
needed.

With respect to our first project objective, we understood that the decision to use learning
outcomes would result in much work. However, we were still surprised by the scale of
the task, i.e., time and consultation needed to achieve meaningful consensus. For the past
16 months we have benefited from guidance given by Jennifer Orum at BCCAT, and
given her experience of other FPM projects she was able to assure us that we were,
indeed, making progress on this project objective. This report is therefore primarily a
description of our work towards this first objective.

As for the second project objective, this report’s “Recommendations” section lists ideas
that emerged during discussions by project-group members and within BCCEC meetings.
At present we do not yet have language or a process that could be used to administer a
Computing Education FPM, and have decided to pass along this task to the future
implementation project.

5. Project Team

We attempted to ensure the project team was an accurate representation of the institutions
making up the BC transfer system. Participating institutions (and individuals from the
institution) were:

• British Columbia Institute of Technology (BCIT): Brian Pidcock
• Langara College: Bryan Green, Mingwu Chen
• Okanagan College: Rick Gee
• Simon Fraser University, Burnaby Campus (SFU): Diana Cukierman
• Thompson Rivers University: Wayne Babinchuck, Mahnhoon Lee
• University of British Columbia, Vancouver Campus (UBC): Donald Acton,

Ed Knorr
• University of the Fraser Valley (UFV): Ora Steyn
• University of Northern British Columbia (UNBC): David Casperson
• University of Victoria (UVic): Michael Zastre

One notable absence from the list is the mention of a private institution. As part of any
future project proposal regarding a possible BCCEC FPM, we will ensure that at least
one such institution (for example, Alexander College or Coquitlam College) is invited to
participate.

The team lead for the project was Michael Zastre.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 8

Problem Statement
1. Traditional Articulation, and Rationale for an FPM

Our standard practice in the BCCEC is to use recommendations from BCCAT on course-
by-course transfer. If a sending institution’s course shares at least 80% of the same
material with a receiving institution’s course (i.e., learning outcomes are largely
identical) then those two courses are said to be equivalent. There are somewhat more
complex schemes for which pairs of courses from a sender are said to be equivalent to
two courses at a receiver. Central to all of such schemes is the existence of an agreement
on transfer between the two institutions that is facilitated by BCCAT.

In Figure 1, for example, institutions A and B cover the same topics in their courses 1, 2
and 3. If institution C wishes to articulate its courses, it may need to establish similar
three-by-three articulations of its courses with both A and B. This system does not scale
well. One approach to reducing the complexity is to establish block-transfer agreements
between institutions. Agreements are still between institutions, and programs are still
compared by comparing courses-by-course, with two-by-two or three-by-three schemes
considered anomalous.

Figure 1: Visualization of mapping topics to courses across institutions

What we have discovered in Computing Education, however, is that two-by-two or even
three-by-three articulation for courses are not enough to cover variants in instructional
delivery across all institutions. At the same time we recognize that after two years of

course 1 course 2 course 3

in
st

itu
tio

n
A

in
st

itu
tio

n
B

in
st

itu
tio

n
C

? ? ?

topic X

topic X topic X

topic Y

topic Y

topic Z

top
ic

Z
top

ic
Z

top
ic

Z

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 9

study, our students appear to have accomplished the same learning outcomes, albeit in
different topic order. Therefore we asked ourselves these questions:

• Can we identify the core discipline-specific material in the first two years of a CS
or IS/IT program?

• Can we then compare programs against this core rather than against another
institution’s programs?

• What would this comparison system look like? (Figure 2)

We tried to answer the last question by asking ourselves which level of “granularity” or
“detail” should be use to compare courses against each other. The BCCEC found that
using “course topics” at any level of detail does not help – it is hard, for example, to get
any two instructors to agree what topics such as “recursion” or even “sorting” mean with
respect to what is taught in a first- or second-year course. Equivalently it is easy for
instructors to agree that certain topics should be included, but only up to the point before
discussion turns to how that topic is tested; at this point, disagreement usually is the
result.

The point here is not that we want to avoid disagreement. Our intent is that the
mechanism chosen to compare programs should lead to either meaningful agreement, or
lead to disagreement that is also meaningful. “Meaningful disagreement” here indicates
that differences in student learning for some items are indeed different between
institutions and that there is a reason for such a difference. The best mechanism we found
to accomplish this is through the use of learning outcomes, and we therefore chose this as
the level at which we would describe the content of a Flexible Pre-Major program.

Figure 2: Comparing institutions’ programs via some mechanism (here unknown)

An important consequence of using such outcomes to describe an FPM – and potentially
identifying an institution’s program as matching the FPM – is that a sending institution
could consider implementing innovations in their curriculum that can articulate to other

institution A institution B

institution C institution D

?

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 10

institutions without becoming overly worried by course-by-course articulation. This is
distinctly different from the current environment where educators at a sending institution
often feel constrained to develop a course in such a way that the course is always
guaranteed to be accepted by a receiver – and this becomes even more difficult when
students from the sending institution may go to a range of receivers each of whom has a
different kind of course. Similarly, receiving institutions can choose to implement their
own innovations in pedagogy without requiring senders to initiate a reassessment of
course equivalence. With an FPM, all participating institutions compare themselves
against the FPM and not against another institution. Students completing the FPM at a
sender can then transfer discipline-specific credit to a receiver (i.e., a “basket of courses”
at the sender matching a “basket of courses” at the receiver).

In summary, an FPM based on learning outcomes provides at least three benefits:

• Sending institutions have confidence that they can focus on appropriate pedagogy
for their community of learners.

• Receiving institutions have confidence in the breadth of learning brought by
transferring students.

• Students have confidence that their choice of home institution does not constrain
their choice of where they can complete their degree.

2. Learning Outcomes as part of the Analysis Project

There exists a large literature on learning outcomes (also sometimes referred to as
“learning objectives”). The key is these outcomes describe learning as accomplished by
the student, as distinct from teaching delivered by the instructor. A document published
by BCIT’s Learning & Teaching Centre provides a good answer to the question “What is
a learning outcome?”:

Learning outcomes specify what learners’ new behaviours will be after a learning
experience. They state the knowledge, skills, and attitudes that the students will
gain through [the] course. Learning outcomes begin with an action verb and
describe something observable or measurable. [BCIT2003, p. 2]

Appropriately worded learning outcomes suggest techniques for delivering material in the
classroom or in a lab setting. These also suggest approaches towards evaluating student
learning. This results in a focus on “outcomes, not processes” [BCIT2003, p. 8] in such a
way that different instructors or institutions can choose suitable pedagogical techniques
for their students yet agree on the kinds of student learning which should occur.

A common practice when creating learning outcomes is to use an action verb identified
by Bloom and others in their work on “learning domains” and “taxonomies” [Bloom56].
Each learning domain (e.g., the “cognitive domain”) is a taxonomy of behaviours
arranged from the most simple and ending with the most complex. For example, in the
cognitive domain, behaviours start with “knowledge” (remembering previously learned
material), then lead to “comprehension”, then “application”, “analysis”, “synthesis”, and

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 11

end with “evaluation”. Bloom and his colleagues were motivated to develop these
taxonomies as part of the work in several Examination Boards. They were trying to
develop a rational approach for assessing exams and tests across different institutions and
determining possible equivalence.

The largest amount of effort devoted by the project committee to our Analysis project
was, by far, devoted to meetings and discussions for identifying learning outcomes for
discipline-specific learning in Computer Science or discipline-specific learning in
Information Science / Information Technology. It bears repeating that crafting these
outcomes meant eliciting disagreement from discussion participants about the meaning of
a particular outcome. A particular wording of a learning outcome may have been too
vague, or too specific, or too ambiguous. A learning outcome with an advocate at one
institution may have had as passionate a detractor from another institution. (More will be
said of this under the “Process” section.)

3. A word of caution about Learning Outcomes

At this point, some readers with experience of learning outcomes may already object
strongly towards their suitability for designing an FPM.

Objection 1: “Learning outcomes are too vague.” There can be a place for outcomes
phrased using more general language, although usually this is when more specific
outcomes are associated with the general outcome. However, at times the vagueness is
due to an inappropriate choice of action verb. For example, there is a temptation to use
the verb “understand” or “know” as an action verb, yet it can be hard to agree on what
these mean when assessing student learning. Those experienced with crafting learning
outcomes will instead substitute a more specific verb such as “identify”, “define”,
“describe” or “demonstrate” [BCIT2003, p. 4]. Vagueness of learning outcomes is
evidence that the authors of the outcome were inexperienced. Vagueness is not a property
inherent to learning outcomes.

Objection 2: “We have no course that covers all these learning outcomes, nor could we
ever have such a course.” While learning outcomes are often used for course
development or program approval, a set of such outcomes does not necessarily
correspond to a specific course. Throughout our project we had to remind ourselves over
and over again that we were focusing on the first two years of a program and not a
specific course. Two learning outcomes with a similar object may stand side-by-side in a
list of outcomes (e.g., “Define/describe a binary tree” vs. “Present an algorithm that can
be used to find the height of a binary tree”) yet the former might be part of a first-year
course, and the latter a part of a second-year course. A list of learning outcomes need not
correspond to a single course.

Objection 3: “Writing learning outcomes requires too much effort, and it is far easier
to compare course content by using topics or textbooks.” Where there is already
significant agreement on what constitutes a course (e.g., in some other BCCAT

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 12

articulation committees), there may indeed be little gained with respect to articulation by
devoting a lot of effort to crafting learning outcomes. In our experience the objection
with respect to effort has some validity if it applies to an individual writing outcomes on
their own, yet it is not true when a group of experienced educators collaborates
(preferably in the same space at the same time) on writing learning outcomes. Such
efforts translate into increased precision. The greater the precision, the easier it is to
identify clearly when a learning outcome is (or is not) part of a course or program.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 13

Process
1. Plan of meetings

The original project proposal listed a mix of in-person meetings with video-conferenced
meetings, including meetings scheduled to directly precede regular BCCEC meetings.
We soon discovered that in-person meetings were easier to arrange and were the most
productive when crafting learning outcomes.

There were three meetings involving only the project committee:

• February 21 & 22, 2008: Held at UBC
• April 30, 2008: Held at UVic
• December 12, 2008: Held at UFV

and the last meeting involved the project committee with attendees at the Fall 2009
BCCEC meeting:

• October 22 & 23, 2009: Held at UFV

2. Sources and Resources

At its first meeting our project committee identified four topic areas in Computer Science
(“Introduction to Programming”, “Computer Architecture”, “Algorithms and Discrete
Structures”, “Software Engineering”) and four topics areas in Information Systems /
Information Technology (“Hardware Systems”, “Web Learning”, “Information
Management”, “Networks”). At that meeting we also identified learning outcomes for
one CS topic area “Introduction to Programming” (see Appendix A). We identified two
main sources for wording of outcomes.

One source is the set of ACM/IEEE Curriculum proposals [CS2001, CS2008, IT2008].
The task force was made up of members of the Association for Computing Machinery
and the IEEE Computer Society. A full four-year program is described in [CS2001], and
specific IS/IT curricula and possible courses are listed in [IT2008]. Some topic areas
described in the curriculum proposal include clearly-written learning outcomes, and these
were helpful to our own FPM project. We have tried where possible to indicate when we
have used an outcome from these documents.

Another source of outcomes are course outlines and course descriptions from BC
institutions. At our second meeting (April 2008) we assigned two or three institutions
from the project committee to each of the eight topic areas. Each institution then assigned
to a topic area a selection of their courses appropriate to that area (i.e., one course from
their first or second year) and prepared a list of learning outcomes based on this course.
All learning outcomes for the same topic from different institutions were then combined
together, and these combined sets for each topic became the starting point for further
discussions by the project committee.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 14

At our third meeting (December 2008) we tackled another topic area (“Algorithms and
Discrete Structures”) and by the end of the daylong session we completed a list of this
area’s outcomes (see Appendix B). We also concluded that effort corresponding to a
daylong meeting was required for each remaining topic area (i.e., six more days of
meetings) if we wanted to prepare accurate learning outcomes. We then recognized that
one very valuable resource available to the project was the membership of the BCCEC
itself. At the May 2009 meeting of the BCCEC we asked it to devote the Fall 2009
meeting to the work required for completing all remaining topic areas. Members of the
project committee were prepared to act as facilitators for this work. The BCCEC
membership agreed, and the days of October 22 & 23, 2009 were devoted to the other six
topics areas.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 15

Findings
1. Learning outcomes (LOs): Enabling vs. Summary

The project committee together with members of the BCCEC has prepared eight lists of
learning outcomes, one for each topic area (four in CS, four in IS/IT). These lists appear
in the appendix.

We also discovered that a list could be broken into two parts. One part contains “enabling
learning outcomes”, where each outcome could easily appear as part of a course
description or as guides for instructional development. Such outcomes could also guide
an educator in crafting an exam question, assignment, project or some other instrument
suitable for evaluating student progress. The second part of the list consists of “summary
learning outcomes” which are sets of enabling LOs. Each summary LO is still phrased
using best practices (e.g., beginning with an action verb) and students achieving such an
outcome will have demonstrated mastery of most of the associated enabling LOs.

Another feature of the relationship between these two parts of an LO list is that an
enabling LO may belong to two or more summary LOs. Strict partitioning of enabling
LOs in summary LO sets is not necessary.

An assumption of the project committee is that an institution will compare its program
with the FPM at the level of summary LOs. If educators or administrators are unclear as
to the precise meaning of a particular summary LO, they then can refer to the detail
available in its associated set of enabling LOs.

Once the resulting course matrix representing the FPM is completed (i.e., assuming the
BCCEC goes ahead with an implementation project), the matrix provided to BCCAT will
associate a basket of courses at institution A with a basket of courses at institution B.
(This assumes institutions A and B are part of the FPM.)

2. Possible mechanisms for administration of the FPM

One topic to which the project committee turned repeatedely was the question of how the
BCCEC can determine when an institution’s program can be part of the FPM. At its core
our FPM is based on learning outcomes, yet the sets of LOs (summary and enabling) are
intended to be a union (i.e., a superset) of LOs from all institutions. Therefore by
definition it would be very difficult, if not impossible, for any institution to match 100%
of the BCCEC FPM learning outcomes for a given topic.

Therefore an open question is the percentage match an institution’s learning outcomes
must have with the FPM to be considered sufficient for the institution’s participation in
the FPM. There are several ways this might be applied. For example, joining the FPM for
Computer Science might mean one of:

• 80% match of summary LOs in each of the four topic areas, or

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 16

• 80% match of summary LOs from the combination of all four topic areas, or

• no less than an 80% match of summary LOs for any of the four topic areas

where “80%” may be substituted by some other figure decided upon by the BCCEC.

Given that this is a relatively new model for articulation, we expect any implementation
phase following this analysis project will begin with consulting Registrars’ Offices from
several different institutions.

As for maintenance of the lists of LOs, the level of detail they provide suggests a two-
phase approach to review of an FPM, assuming reviews occur every three or four years.
In the first phase the list of outcomes are re-examined, with some LOs rephrased, some
LOs deleted, some new LOs added, but the majority unchanged. In the year following
this review, institutions participating in the FPM can compare their programs against the
revised lists. This may mean some institutions substitute different courses against the
FPM, or perhaps even revise existing courses to add missing outcomes to their programs.

Changes to the topic areas themselves (i.e., addition of relevant new areas, deletion of
obsolete older areas) should occur far less frequently than regular reviews. Such changes
could occur on an ad hoc basis, and would happen when the BCCEC determines via a
formal vote that a topic change is necessary.

3. Several other open questions

What might an FPM look like from a student’s point of view? This refers to the
documentation issued by a student’s home institution, and which the receiving institution
would accept. Ideally the student’s transcript would have a notation indicating that in
completing a course of study they have also completed the student learning comprising a
CS or IS/IT Flexible Pre-Major. However, introducing notations to transcripts is difficult
and Registrars are rightly hesitant to do so. Another model is that the home institution’s
department prepares a letter for the student indicating completion of FPM material, and
the participating receiving institution’s department then accepts the letter.

What would be the relationship of the FPM to existing course-by-course transfer
agreements? We mentioned earlier some of the challenges in our discipline caused by
differing approaches to introductory CS education. If we assume that the flexibility to
innovate provided through the FPM is embraced by an institution, then some of that
institution’s existing course-by-course transfers may become more and more difficult to
maintain. Students completing the “basket of courses” at such an institution will have no
difficulty here, but those students completing some but not all courses in such a basket
may find they receive general-level credit instead of specific course transfers. This is not
a desirable outcome.

How best can such an FPM by communicated to students, faculty and administrators?
One of the biggest challenges we found as a project committee was when any one of us

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 17

forgot to focus on LOs at the program level. We therefore needed to remind ourselves
over and over again about our proper focus. One reason why we forget is because we
usually think in terms of courses. Current students, faculty colleagues, and administrators
handling student transfers are also likely to think in terms of courses when trying to
comprehend the FPM (and may therefore draw incorrect conclusions).

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 18

Recommendations
At the end of the Fall 2009 BCCEC meeting, the committee considered the work of the
project committee and discussed much of the material and questions which are now
assembled in this report. The outcome of this discussion was that the BCCEC believed an
FPM is indeed feasible, and that it should proceed to an implementation phase. On the
last day of the meeting (October 23, 2009) the BCCEC considered the following motion:

BCCEC recommends that a funding proposal to the TAC for Phase 2 of the
FPM by created for the May [2010] BCCEC meeting.

“Phase 2” here refers to a “Flexible Pre-Major Implementation Project.” The motion was
moved, seconded and carried.

What follows are recommendations from the project committee for consideration in the
implementation-phase project.

Refine existing LO lists. Not all topics are organized with summary LOs and enabling
LOs, and some LOs require rewording (i.e., changing the verb “understand” to a more
appropriate verb). Some topics require much more detail, and revising LOs in other
topics may result in some contention depending on the form of consultation that is used
(“Computer Architecture” is one example). Overall the lists could be made more
consistent with each other and may benefit from recent work on taxonomies for learning
in ITC (Information Technology and Communication) disciplines. Above all, LOs must
be meaningful.

Obtain institutional consensus on wording of FPM participation. The purpose of the
FPM lists is to provide flexibility to institutions and to focus on student outcomes. They
are not meant to prescribe process or “time on task” (e.g., nothing in the FPM refers to
hours spent by students in labs). Receiving institutions need assurance that students
transferring via an FPM bring enough completed outcomes to be considered equivalent
with other students at that institution. Registrars also need some assurance that the
administration involved with such transferring students is practicable. Finally, faculty at
both sending and receiving institutions should accept the role of such LOs in enabling the
transfer of student learning between institutions.

Identify other benefits of work from our FPM studies and share it with others. Some of
the extra benefits are:

• Using the LOs to help with interprovincial student transfer.

• Ensuring lists are available to help students discover what they will learn in an
FPM program.

• Showing employers these lists so that they understand what CS and IS/IT students
learn at our institutions.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 19

• Providing material for dialogue with teachers in the K-12 school system as they
already make extensive use of LOs in their own instructional development and
delivery.

• Assisting academic units preparing for External Reviews or visits from
accreditation bodies.

• Providing a resource for private institutions considering the creation of new ITC
programs.

Consider how best to communicate the nature of our FPM to students. There was some
discussion by the project committee on the suitability of a website that helps students
plan their CS or IS/IT education via learning outcomes.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 20

Some additional comments
At BCCAT’s November 6, 2009 JAM (Joint Annual Meeting of Articulation Committee
Chairs, SLPs and ICPs), the project committee’s work was presented. As part of that
presentation some “cautions” (i.e., “lessons learned”) for a project such as ours were
shared. They are repeated here in the hope they will help any other articulation
committees wishing to try an approach such as ours.

Accept no substitute for in-person meetings. As befits information technologists such as
ourselves, we tried using e-mail, wikis, distributed-meeting tools, etc. to facilitate our
work. In the end, however, we found that crafting meaningful LOs required a lot of give-
and-take (not to mention reading body language) in front of a whiteboard. The meanings
of certain word, verbs, or technical terms for topics are suitably clarified with such
discussion, especially if participants feel comfortable to express doubt, confusion or
outright disagreement. An assumption here is that relationships amongst committee
members are already collegial such that it is possible to have disagreement without
disrespect.

Budget more than a year to do the analysis. Our FPM Analysis project is now complete,
and this is 21 months after we started. Our intention in the original project proposal was
to perform all work (consultation, deriving lists of LOs, agreement on wording of FPM
participation) in 12 months. Thankfully we received much flexibility from BCCAT in the
adjustment of project deadlines. We were far too ambitious.

Avoid searching for perfect sets of learning outcomes. There exists no perfect taxonomy
of learning. At present the community engaged in research in Scholarship of Teaching
and Learning (SoTL) continue to produce additional taxonomies and methods for
expressing learning outcomes. We expect our lists to be revised in the future, and also
expect this revision to improve the utility of the outcomes. Similarly we would
recommend against phrasing learning outcomes solely to ensure there is no disagreement
– sometimes we found it helpful to include outcomes in apparent conflict if only because
educators adopt certain outcomes due to personal temperament and learning style. We
prefer to maintain this kind of diversity, and we achieved this by building consensus.

This is not about courses or topics. There will always exist the temptation to slip back
into thinking about course-by-course transfers, and usually these transfers are established
by examining lists of topics. In our experience, educators often agree (trivially) on choice
of topics, yet disagree about learning outcomes. We strongly recommend setting aside
topics and banishing the verb “understand” from LOs.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 21

Acknowledgements
The project committee wishes to thank:

• Donald Acton, University of British Columbia, Vancouver for establishing and
maintaining an excellent TWiki site that acted as a superb information repository
for the project;

• Neil Coburn, Selkirk College (and the BCCEC’s System Liaison Person) for
suggesting the idea of preparing an FPM Analysis project proposal;

• Jennifer Orum, BCCAT for advice and encouragement to the BCCEC and her
assurances that we were on the right track;

• Jean Karlinski, BCCAT for handling the reimbursement of project expenses so
quickly and so cheerfully;

• and Ora Steyn and Paul Franklin, University of the Fraser Valley for acting as
cheerful hosts to the project committee and BCCEC on more than one occasion.

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 22

Reference Works
[BCIT2003] “Writing Learning Outcomes.” Learning Resources Unit of the British
Columbia Institute of Technology. 1996, revised 2003. Available at:
https://helpdesk.bcit.ca/fsr/teach/courseprep/htoutcomes.pdf

[Bloom56] “Taxonomy of Educational Objectives: The Classification of Education goals
(Handbook 1, Cognitive Domain)”, Benjamin Bloom, Editor. Longmans, Green (New
York, Toronto). 1956.

[CS2001] “Computing Curricula 2001, Final Report.” The Joint Task Force on
Computing Curricula, Institute for Electrical and Electronic Engineers (IEEE) Computer
Society and the Association for Computing Machinery (ACM). December 2001.
Available at: http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

[CS2008] “Computer Science Curriculum 2008: An Interim Revision of CS 2001.”
Association for Computing Machinery and the Institute for Electrical and Electronic
Engineers (IEEE) Computer Society. December 2008. Available at:
http://www.acm.org//education/curricula/ComputerScience2008.pdf

[IT2008] “Information Technology 2008: Curriculum Guidelines for Undergraduate
Degree Programs in Information Technology.” Association for Computing Machinery
and the IEEE Computer Society. November 2008. Available at:
http://www.acm.org//education/curricula/IT2008%20Curriculum.pdf

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 23

Appendices
Eight sets of lists are included here. Listed below for each topic area are the names of
those who participated in the discussions that generated each list. Names in italics
correspond to those who prepared a written version of the discussion. All lists were
converted into a canonical form by the team lead, Michael Zastre (i.e., summary
outcomes are itemized by letter, enabling outcomes are itemized by number).

CS: Introductory Programming Languages

• Mingwu Chen, Langara College
• David Casperson, University of Northern British Columbia
• Diana Cukierman, Simon Fraser University, Burnaby
• Rick Gee, Okanagan College
• Bryan Green, Langara College
• Ed Knorr, University of British Columbia Vancouver
• Mahnhoon Lee, Thompson Rivers University
• Brian Pidcock, British Columbia Institute of Technology
• Ora Steyn, University of the Fraser Valley
• Michael Zastre, University of Victoria

CS: Algorithms and Discrete Structures

• Donald Acton, University of British Columbia Vancouver
• Wayne Babinkchuk, Thompson Rivers University
• Mingwu Chen, Langara College
• Diana Cukierman, Simon Fraser University Burnaby
• Rick Gee, Okanagan College
• Bryan Green, Langara College
• Ed Knorr, University of British Columbia Vancouver
• Ora Steyn, University of the Fraser Valley
• Michael Zastre, University of Victoria

CS: Computer Architecture

• David Casperson, University of Northern British Columbia
• Diana Cukierman, Simon Fraser University Burnaby
• Ed Knorr, University of British Columbia Vancouver
• Anne Lavergne, Simon Fraser University Burnaby
• Nalin Wijesinghe, Langara College
• Saif Zahir, University of Northern British Columbia

Final Report: Computing Education Flexible Pre-Major Analysis Report December 31, 2009

Page 24

CS: Software Engineering

• David Casperson, University of Northern British Columbia
• Rick Gee, Okanagan College
• Ed Knorr, University of British Columbia Vancouver
• Anne Lavergne, Simon Fraser University Burnaby
• Tim Topper, Yukon College
• Saif Zahir, University of Northern British Columbia

IS/IT: Hardware Systems

• Mohd Abdullah, Thompson Rivers University
• Ken Chan, Columbia College
• Diana Cukierman, Simon Fraser University Burnaby
• Paul Franklin, University of the Fraser Valley
• Brian Pidcock, British Columbia Institute of Technology

IS/IT: Web Learning

• Jim Bailey, College of the Rockies
• Bryan Green, Langara College
• Ora Steyn, University of the Fraser Valley
• Easwari Thoreraj, Selkirk College
• George Tsiknis, University of British Columbia Vancouver

IS/IT: Information Management

• Jim Bailey, College of the Rockies
• Ken Chan, Columbia College
• Paul Franklin, University of the Fraser Valley
• Rick Gee, Okanagan College
• Ora Steyn, University of the Fraser Valley

IS/IT: Networking

• Mohd Abdullah, Thompson Rivers University
• Bryan Green, Langara College
• Brian Pidcock, British Columbia Institute of Technology
• Easwari Thoreraj, Selkirk College
• Tim Topper, Yukon College
• Raymond Yu, Douglas College

O
riginal S

ource key:
FPM

: Flexible Pre-M
ajor Feasibility com

m
ittee

PFn: A
C
M

/IEEE "Program
m

ing Fundam
entals" learning outcom

es (section n)
PLn: A

C
M

/IEEE "Program
m

ing Languages" learning outcom
es (section n)

A
ln: A

C
M

/IEEE "A
lgorithm

s and C
om

plexity" learning outcom
es (section n)

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

O
rig

in
a
l so

u
rce

1
Explain the behavior of a provided code fragm

ent.
FPM

2
M

odify an existing code fragm
ent in order to add to its

behavior or change its behavior.
FPM

3
M

odify and expand short program
s that use standard

conditional structures and functions.
PF1

4
M

odify and expand short program
s that use standard iterative

control structures and functions.
PF1

5
W

rite w
ell-structured, w

ell-docum
ented, understandable code.

FPM
6

D
escribe the role of docum

entation and com
m

ents.
FPM

7
U

se language-appropriate idiom
s.

FPM
8

W
rite w

ell-structured external docum
entation.

FPM

9

D
esign, im

plem
ent, test, and debug a program

 that uses each
of the follow

ig fundam
ental program

m
ing constructs: basic

com
putation, sim

ple I/O
, standard conditional and iterative

structures, and the definition of functions.

PF1

10
D

escribe the conditional structures available in a language.
FPM

 PF1

11
U

se the appropriate conditional structures available in a
language.

FPM
 PF1

12
C
hoose appropriate conditional and iteration constructs for a

given program
m

ing task.
PF1

13
U

se pseudocode or diagram
s or both to describe the steps

involved in solving sim
ple problem

s.
PF2, FPM

14
D

escribe the iteration structures available in a language.
FPM

, PF1

In
tro

d
u

ctio
n

 to
 P

ro
g

ra
m

m
in

g
 La

n
g

u
a
g

e
s (C

o
m

p
u

te
r S

cie
n

ce
)

Enabling Learning O
bjectives

Prepared: February 21/22, 2008 (@
 U

B
C
 Vancouver)

15
U

se the appropriate iteration structures available in a
language.

FPM
, PF1

16
A
pply the techniques of structured (functional) decom

position
to break a program

 into sm
aller pieces.

PF1

17
U

nderstand the role of pseudocoding and diagram
m

ing in
decom

posing problem
s.

FPM

18
D

em
onstrate the role of form

al and actual param
eters and

function argum
ents.

FPM

19
Identify the necessary properties of good algorithm

s.
PF2

20
D

efine algorithm
.

FPM
21

C
reate algorithm

s for solving sim
ple problem

s.
PF2

22
Trace the execution of a program

 (e.g., desk checking).
FPM

23
D

escribe strategies that are useful in rem
oving errors

(debugging).
PF2

24
U

se strategies that are useful in rem
oving errors.

FPM

25
Interpret error m

essages (com
piler, run-tim

e, etc.) and
understand their causes.

FPM

26
Interpret system

 docum
entation.

FPM

27
Interpret language docum

entation for exploring language
features.

FPM

28
D

iscuss the representation and use of prim
itive data types and

built-in data structures (e.g., strings, arrays, files, etc.).
PF3

29
D

escribe how
 strings are allocated, m

anipulated and used.
PF3

30
D

escribe how
 arrays are allocated, m

anipulated and used.
PF3

31
D

escribe how
 records are allocated, m

anipulated and used.
PF3

32
D

escribe how
 lists, stacks and queues are allocated,

m
anipulated and used.

PF3

33
D

escribe how
 trees are allocated, m

anipulated and used.
PF3

34
D

escribe how
 graphs are allocated, m

anipulated and used.
PF3

35
D

escribe how
 hash tables are allocated, m

anipulated and used.
PF3

36
Im

plem
ent user-defined data structures in a high-level

language.
PF3

37
C
om

pare alternative im
plem

entations of data structures w
ith

respect to perform
ance.

PF3

38
C
om

pare and contrast the costs and benefits of dynam
ic and

static data structure im
plem

entations.
PF3

39
C
hoose the appropriate data structure for m

odeling a given
problem

.
PF3

40
Im

plem
ent user-defined data structures using pointers and

references.
FPM

41
U

se generic data structures or tem
plates to solve a given

problem
.

FPM

42
D

em
onstrate fam

iliarity w
ith contents of industry-standard

data structure libraries.
FPM

43
C
reate a com

plete suite of tests for a piece of softw
are.

FPM
44

C
riticize an existing suite of tests for a piece of softw

are.
FPM

45
D

evise appropriate pre- and post-conditions for m
ethods or

functions.
FPM

46
D

escribe the concept of recursion and give exam
ples of its use.

PF4

47
Identify the base case and the general case of a recursively
defined problem

.
PF4

48
C
om

pare iterative and recursive solutions for elem
entry

problem
s such as factorial.

PF4

49
C
om

pare and constrast m
athem

atical induction and recursion.
50

Form
ulate loop invariants for sim

ple loops.
FPM

51
D

em
onstrate code correctness given a loop invariant.

FPM
52

D
em

onstrate loop term
ination.

FPM
53

D
em

onstrate correct handling of boundary conditions.
FPM

54
D

escribe the divide-and-conquer approach.
PF4

55
Im

plem
ent, test, and debug sim

ple recursive functions and
procedures.

PF4

56
D

escribe how
 recursion can be im

plem
ented using a stack.

PF4

57
D

iscuss problem
s for w

hich backtracking is an appropriate
solution.

PF4

58
D

eterm
ine w

hen a recursive solution is appropriate for a
problem

.
PF4

59
D

evelop code that responds to exception conditions raised
during execution.

PF5.3

60
Explain the difference betw

een event-driven program
m

ing and
com

m
and-line program

m
ing.

PF5

61
D

esign, code, test and debug sim
ple event-driven program

s
that respond to user events.

PF5

62
D

esign, code, test and debug sim
ple m

ulti-threaded program
s.

FPM

63
D

eterm
ine w

hen a m
ulti-threaded solution is appropriate for a

problem
.

FPM

64
Explain the use of big O

, om
ega, and theta notation to

describe the behavior of functions.
A
L1

65
U

se big O
, om

ega, and theta notation to give asym
ptotic

upper, low
er, and tight bounds on tim

e and space com
plexity

of algorithm
s.

A
L2

66
D

eterm
ine the tim

e and space com
plexity of sim

ple
algorithm

s.
A
L1

67
R
elate the com

plexity class of an algorithm
 to its scalability.

FPM

68
D

escribe the kinds of operations w
e can m

easure in evaluating
the perform

ance of an algorithm
.

FPM

69
R
ank algorithm

s by rate of grow
th.

FPM

70
C
om

pare and contrast best-, w
orst- and average-case

behaviors.
FPM

71
Im

plem
ent a greedy algorithm

 to solve an appropriate
problem

.
A
L2

72
Im

plem
ent the m

ost com
m

on quadratic and O
 (N

 log N
)

sorting algorithm
s.

A
L3

73
D

esign and im
plem

ent an appropriate hashing function for an
application.

A
L3

74
D

esign and im
plem

ent a collision-resolution algorithm
 for a

hash table.
A
L3

75
D

iscuss the com
putational efficiency of the principal algorithm

s
for sorting, searching and hashing.

A
L3

76

D
iscuss factors other than com

putational efficiency that
influence the choice of algorithm

s, such as program
m

ing tim
e,

m
aintainability, and the use of application-specific patterns in

the input data.

A
L3

77
S
olve problem

s using fundam
ental graph algorithm

s.
A
L3

78
Justify the choice of algorithm

s for a given problem
 w

ith
reference to algorithm

 tim
e and space properties.

FPM

79
D

esign and im
plem

ent a dynam
ic program

m
ing solution to a

problem
.

A
L8

80
D

iscuss the concept of finite state m
achines.

A
L5

81
D

iscuss the concept of a determ
inistic finite autom

ata.
FPM

82
Explain context-free gram

m
ars.

A
L5

83
D

esign a determ
inistic FS

M
 to accept a sim

ple regular
expression.

A
L5

84
Explain how

 som
e problem

s have no algorithm
ic solution.

A
L5

85
Provide exam

ples that illustrate the concept of
uncom

putability.
A
L

86
Justify the philosophy of object-oriented design and the
concepts of encapsulation, abstraction, inheritance and
polym

orphism
.

PL6

87
D

esign, im
plem

ent, test and debug sim
ple program

s in an
object-oriented program

m
ing language.

PL6

88
D

escribe how
 the class m

echanism
 supports encapsulation and

inform
ation hiding.

PL6

89
D

esign, im
plem

ent, and test the im
plem

entation of is-a
relationships am

ong objects using a class hierarchy and
inheritance.

PL6

90
C
om

pare and contrast the notions of overloading and
overriding m

ethods in an object-oriented language.
PL6

91
Expain the relationship betw

een the static structure of the
class and the dynam

ic structure of the instances of the class.
PL6

92
D

escribe how
 iterators access the elem

ents of a container.
PL6

93
Interpret U

M
L class diagram

s.
FPM

94
identify the classes im

plied by a problem
.

FPM

95
C
reate a U

M
L class diagram

 that associates classes identified
in a problem

.
FPM

96
C
reate a U

M
L sequence diagram

 representing object
interaction.

FPM

97
Interpret U

M
L interaction diagram

s.
FPM

98
C
om

pare and contrast com
piled and interpreted execution

m
odels, outlining the relative m

erits of each.
PL3

99
D

escribe the phases of program
 translation from

 source code
to executable code and the files produced by these phases.

PL3

100
Explain the differences betw

een m
achine-dependent and

m
achine-independent translation and w

here these differences
are evident in the translation process.

PL3

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

O
rig

in
a
l so

u
rce

1
U

nderstand how
 to graph the follow

ing functions: c, lg x, x, xlg
x, x2, 2x

TR
U

G

2
D

em
onstrate m

athem
atical literacy (com

petence, fam
iliarity,

ability to use to solve problem
s) in sets, functions, and

m
athem

atical sym
bols

U
B
C

G

3
A
pply sets and functions to hashing, com

plexity analysis,
counting, and generally supporting exact problem

 expression.
U

B
C

G
J

4
C
om

m
unicate effectively through set parlance and notation

(e.g., be able to translate general problem
 into rigorous

problem
 statem

ents throughout the course).
U

B
C

G

5
U

nderstand the notion of m
apping betw

een sets.
U

B
C

G
6

Prove one to one and onto for finite and infinite sets.
U

B
C

G

7
R
ecognize the different classes of functions in term

s of their
com

plexity.
U

B
C

H
I

8
U

nderstand w
hat is m

eant by asym
ptotic behavior.

TR
U

G
H

9
U

nderstand the differences betw
een big O

, big O
m

ega, and big
Theta.

TR
U

G
H

I

10
U

nderstand the tim
e taken to execute program

s w
ith B

ig O

values (i.e. com
plexity classes) listed as c, lg x, x, xlg x, x^

2,
2^

x
TR

U
H

11
D

efine w
hich program

 operations w
e m

easure in an algorithm

in order to approxim
ate its efficiency (e.g., num

ber of
instructions, steps, function calls, com

parisons, sw
aps).

U
B
C

I

12
D

efine "input size" and determ
ine the effect (in term

s of
perform

ance) that input size has on an algorithm
.

U
B
C

H
J

13
G

ive exam
ples of com

m
on practical lim

its of problem
 size for

each com
plexity class.

U
B
C

J

14
Explain the differences betw

een best, w
orst, and average case

analysis.
U

B
C

C
H

A
lg

o
rith

m
s +

 D
a
ta

 S
tru

ctu
re

s (C
o

m
p

u
te

r S
cie

n
ce

)
Enabling Learning O

bjectives (w
ith cross-reference to S

um
m

ary Learning O
bjectives)

Prepared: D
ecem

ber 12, 2008 (@
 U

niversity of the Fraser Valley)

S
u

m
m

a
ry cro

ss-re
fe

re
n

ce

15
D

escribe w
hy best-case analysis is rarely relevant and how

w

orst-case analysis m
ay never be encountered in practice.

U
B
C

J

16
U

nderstand how
 a sequential search w

orks.
TR

U
, S

FU
E

F
K

17
C
alculate the B

ig O
 value for a sequential search

TR
U

, S
FU

F
L

18
C
om

pute the w
orst-case asym

ptotic com
plexity of an algorithm

(e.g. the w

orst possible running tim
e based on the size of the

input (N
)).

U
B
C

C
H

I
J

19
Exam

ine som
e m

odifications to a sequential search designed
to enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
M

20
D

ifferentiate an abstraction from
 an im

plem
entation.

U
B
C

21
D

escribe list, stack and queue data structures along w
ith their

public-interface specifications.
S
FU

, U
B
C

M

22
D

em
onstrate how

 dynam
ic m

em
ory m

anagem
ent is handled in

[an im
perative language] (e.g., allocation, deallocation or

garbage collection, m
em

ory heap, run-tim
e stack).

U
B
C

M

23
G

ain experience w
ith pointers/references in [an im

perative
language] and their tradeoffs and risks (dangling pointers,
m

em
ory leaks).

U
B
C

M

24
Im

plem
ent as A

D
Ts -- using both index-based and

reference/pointer techniques -- list, stack and queue data
structures.

S
FU

, U
B
C

M

25
S
tate exam

ples of problem
s that can be solved using stack,

queues, and dequeues abstract data types.
U

B
C

L

26
R
ecognize algorithm

s as being iterative or recursive.
U

B
C

N
O

27
Prove that a loop invariant holds for a given code or algorithm

exam

ple.
U

B
C

P

28
D

escribe the relationship betw
een recursion and induction

(e.g. take a recursive code fragm
ent and express it

m
athem

atically in order to prove its correctness inductively).
U

B
C

P

29
Im

plem
ent iterative and recursive versions of operations on

list, stack and queue data structures, and discuss the im
pact

of the im
plem

entation choice.
S
FU

, U
B
C

L
M

P

30
U

nderstand how
 a binary search w

orks.
TR

U
, S

FU
E

K
31

C
alculate the B

ig O
 value for a binary search.

TR
U

, S
FU

I

32
Exam

ine som
e m

odifications to a binary search designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
, S

FU
I

M

33
U

nderstand how
 a hash search w

orks.
TR

U
, S

FU
K

34
C
alculate the B

ig O
 value for a hash search.

TR
U

, S
FU

I

35
Exam

ine som
e m

odifications to a hash search designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
M

36
D

escribe tree, hash-table, heaps and priority-queue data
structures along w

ith their public-interface specifications.
S
FU

K

37
Im

plem
ent and m

anipulate a heap using an array as the
underlying data structure.

U
B
C

M

38
Im

plem
ent as A

D
Ts -- using both index-based and

reference/pointer techniques -- tree, hash-table, heaps and
priority-queue data structures.

S
FU

M

39
Im

plem
ent iterative and recursive versions of operations on

tree, hash-table, heaps and priority-queue data structures,
and discuss the im

pact of the im
plem

entation choice.
S
FU

, U
B
C

M

40
Provide exam

ples of appropriate applications for priority
queues and heaps.

U
B
C

K
L

41
Provide exam

ples of the types of problem
s that can benefit

from
 a hash data structure.

U
B
C

K
L

42
C
om

pare and contrast open addressing and chaining [for heap
data structures].

U
B
C

L

43
Evaluate collision resolution policies [for heap data structures].

U
B
C

L

44
D

escribe the conditions under w
hich hashing can degenerate

from
 O

(1) expected com
plexity to O

(n).
U

B
C

E
F

L

45
Identify the types of search problem

s that do not benefit from

hashing (e.g., range searching) and explain w
hy.

U
B
C

46
D

escribe how
 tail-recursive algorithm

s can require less space
com

plexity than non-tail recursive algorithm
s.

U
B
C

N

47
D

raw
 a recursion tree and relate the depth to a) the num

ber of
recursive calls and b) the size of the runtim

e stack. Identify
and/or produce an exam

ple of infinite recursion.
U

B
C

N

48
U

nderstand how
 a bubble sort w

orks.
TR

U
, S

FU
A

49
C
alculate the B

ig O
 value for a bubble sort.

TR
U

, S
FU

C
I

50
Exam

ine som
e m

odifications to the bubble sort designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
D

I

51
Im

plem
ent the bubble-sort algorithm

.
S
FU

D
52

U
nderstand how

 a selection sort w
orks.

TR
U

, S
FU

A
53

C
alculate the B

ig O
 value for a selection sort.

TR
U

, S
FU

, U
B
C

C
I

54
Exam

ine som
e m

odifications to the selection sort designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
D

I

55
Im

plem
ent the selection-sort algorithm

.
S
FU

D
56

U
nderstand how

 a insertion sort w
orks.

TR
U

, S
FU

A
57

C
alculate the B

ig O
 value for a selection sort.

TR
U

, S
FU

, U
B
C

C
I

58
Exam

ine som
e m

odifications to the insertion sort designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
D

I

59
Im

plem
ent the insertion-sort algorithm

.
S
FU

D
60

U
nderstand how

 a m
erge sort w

orks.
TR

U
, S

FU
A

61
C
alculate the B

ig O
 value for a m

erge sort.
TR

U
, S

FU
, U

B
C

C
I

62
Exam

ine som
e m

odifications to the m
erge sort designed to

enhance its perform
ance, and calculate the B

ig O
 value for

each enhancem
ent.

TR
U

D
I

63
Im

plem
ent the m

erge-sort algorithm
.

S
FU

D
64

U
nderstand how

 a quicksort w
orks.

TR
U

, S
FU

A
65

C
alculate the B

ig O
 value for a quicksort.

TR
U

, S
FU

C
I

66
Exam

ine som
e m

odifications to the quicksort designed to
enhance its perform

ance, and calculate the B
ig O

 value for
each enhancem

ent.
TR

U
D

I

67
Im

plem
ent the quicksort algorithm

.
S
FU

D

68
C
om

pare and contrast the space requirem
ents for m

erge sort
versus quicksort.

U
B
C

B
C

69
D

escribe and apply various sorting algorithm
s; C

om
pare and

contrast their tradeoffs.
U

B
C
, S

FU
C

70
S
tate differences in perform

ance for large datasets versus
sm

all datasets on various sorting algorithm
s.

TR
U

, S
FU

B

71
D

efine/describe a binary tree.
U

B
C

K
72

A
pply basic tree definitions to classification problem

s.
U

B
C

73
Explain w

hy a binary tree is useful in C
S
.

TR
U

, S
FU

L

74
Present an algorithm

 that can be used to find the height of a
binary tree.

TR
U

M

75
D

iscuss the B
ig O

 value of the algorithm
 in E3.

TR
U

, S
FU

I

76
D

iscuss tree traversal algorithm
s - InO

rder, PostO
rder,

PreO
rder

TR
U

, S
FU

K

77
D

iscuss the B
ig O

 values of InO
rder, PostO

rder and PreO
rder

traversal algorithm
s.

TR
U

78
Explain w

hy a binary search tree is useful in C
S
.

TR
U

L

79
Present com

m
on binary-search tree algorithm

s such as search
for data, adding data, deleting data.

TR
U

, S
FU

, U
B
C

M

80
D

iscuss the B
ig O

 value of com
m

on binary-search tree
algorithm

s (search for data, adding data, deleting data).
TR

U
, S

FU

81

D
escribe the properties of binary trees, binary search trees,

and m
ore general trees; and im

plem
ent iterative and recursive

algorithm
s for navigating them

 in [an im
perative language].

U
B
C

K
L

82
C
om

pare and contrast ordered versus unordered trees in term
s

of com
plexity and scope of application.

U
B
C

I
L

83
C
ategorize an algorithm

 into one of the com
m

on com
plexity

classes (e.g. constant, logarithm
ic, linear, quadratic, etc.).

U
B
C

I

84
G

iven tw
o or m

ore algorithm
s, rank them

 in term
s of their

tim
e and space com

plexity.
U

B
C

85
C
om

pare and contrast [the concepts of] space and tim
e

com
plexity.

U
B
C

C
H

J

86
D

escribe the structure, navigation and com
plexity of an order

m
 B

+
 tree.

U
B
C

K
L

87
Insert and delete elem

ents from
 a B

+
 tree.

U
B
C

K

88
Explain the relationship am

ong the order of a B
+

 tree, the
num

ber of nodes, and the m
inim

um
 and m

axim
um

 capacities
of internal and external nodes.

U
B
C

K

89
G

ive exam
ples of the types of problem

s that B
+

 trees can
solve efficiently.

U
B
C

K

90
C
om

pare and contrast B
+

 trees and hash data structures.
U

B
C

L

91
Explain w

hy B
+

 trees are preferred dynam
ic data structures in

relational database system
s.

U
B
C

L

92

D
iscuss the tradeoffs in algorithm

 perform
ance w

ith respect to
space and tim

e com
plexity. E.g., C

om
pare and contrast the

space requirem
ents for a linked list (single, double) versus an

array-based im
plem

entation.

U
B
C

I

93
G

iven a [program
 fragm

ent], w
rite a form

ula w
hich m

easures
the num

ber of steps executed as a function of the size of the
input (N

).
U

B
C

I
P

94
Take a loop code fragm

ent and express it m
athem

atically in
order to prove its correctness inductively (specifically
describing that the induction is on the iteration variable).

U
B
C

P

95
In sim

pler cases, determ
ine the loop invariant.

U
B
C

P

96
A
pply counting principles to determ

ine the num
ber of

arrangem
ents or orderings of discrete objects, w

ith or w
ithout

repetition, and given various constraints.
U

B
C

G

97
U

se appropriate m
athem

atical constructs to express a counting
problem

 (e.g. counting passw
ords w

ith various restrictions
placed on the characters w

ithin).
U

B
C

G

98
Identify problem

s that can be expressed and solved as a
com

bination of sm
aller sub problem

s. W
hen necessary, use

decision trees to m
odel m

ore com
plex counting problem

s.
U

B
C

P

99
S
olve problem

s using com
binatorial argum

ents and algebraic
proofs.

U
B
C

100
S
tate the relationship am

ong recursion, Pascal's Triangle, and
Pascal's Identity.

U
B
C

P

101
D

efine binom
ial distribution and identify applications.

U
B
C

G

102
M

odel and solve appropriate problem
s using binom

ial
distribution.

U
B
C

G

103
A
pply basic probability theory to problem

 solving, and identify
the parallels betw

een probability and counting.
U

B
C

G

104
D

efine various form
s of the pigeonhole principle; recognize and

solve the specific types of counting and hashing problem
s to

w
hich they apply.

U
B
C

P

105
D

iscuss the B
ig O

 of spanning-tree algorithm
s.

TR
U

106
Perform

 breadth-first and depth-first searches in graphs.
U

B
C

K

107
xplain w

hy graph traversals are m
ore com

plicated than tree
traversals.

U
B
C

K

108
D

iscuss Prim
's and K

ruskal's m
inim

al spanning-tree
algorithm

s.
TR

U
K

109
D

iscuss the B
ig O

 of m
inim

al spanning-tree algorithm
s.

TR
U

110
D

escribe the properties and possible applications of various
kinds of graphs (e.g., sim

ple, m
ultigraph, bipartite, com

plete),
and the relationships am

ong vertices, edges, and degrees
U

B
C
, TR

U
L

111
Prove basic theorem

s about sim
ple graphs (e.g. handshaking

theorem
).

U
B
C

112
Explain the com

puter representation of graphs.
TR

U
K

113
C
onvert betw

een adjacency m
atrices / lists and their

corresponding graphs.
U

B
C

K

114
D

eterm
ine w

hether a given graph is a subgraph of another.
U

B
C

115
D

iscuss the com
plexity of the Travelling S

alesm
an problem

TR

U
116

Explain D
ijkstra's A

lgorithm
 for the S

hortest Path in a graph
TR

U
117

D
iscuss the B

ig O
 of D

ijkstra's algorithm

TR
U

118
A
pply object oriented and m

odular design techniques to an
application problem

 to design a softw
are solution.

S
FU

119
S
elect the m

ost appropriate data structure (lists, stacks,
queues, trees, hash tables, heaps, priority queues) for a
solution to a problem

.
S
FU

, U
B
C

L

120
Im

plem
ent an application design, including an im

plem
entation

an appropriate data structure (lists, stacks, queues, trees,
hash tables, heaps, priority queues).

S
FU

M

121
A
nalyze [im

perative-language] program
s and functions to

determ
ine their algorithm

ic com
plexity.

U
B
C

I

A
lg

o
rith

m
s +

 D
a
ta

 S
tru

ctu
re

s (C
o

m
p

u
te

r S
cie

n
ce

)
S
um

m
ary Learning O

bjectives (w
ith cross-reference to Enabling Learning O

bjectives)
Prepared: D

ecem
ber 12, 2008 (@

 U
niversity of the Fraser Valley)

S
et of sorting algorithm

s S
s (in som

ething of a partial-order indicating im
portance): selection, insertion, bubble, m

erge, quicksort, heapsort.

S
et of operations O

ps on data structures: insertion, deletion, traversal, search.

#
S

u
m

m
a
ry Le

a
rn

in
g

 O
b

je
ctive

E
n

a
b

lin
g

 cro
ss-re

fe
re

n
ce

A
Illustrate / trace the operation of sort s from

 S
s.

48
52

56
60

64
B

C
hoose / justify a sort given a specific problem

.
68

70

C

C
om

pare / contrast tradeoffs of sorting algorithm
s

s, t, and u from
 S

s.
14

18
49

53
57

61
65

68
69

85

D

Im
plem

ent (apply) and m
odify sorting algorithm

 s
from

 S
s.

50
51

54
55

58
59

62
63

66
67

E

Illustrate / trace the search operation on data
structure d from

 D
d.

16
30

44

F
C
om

pare / contrast tradeoffs of search algorithm
s s

and t.
16

17
44

G

D
em

onstrate m
athem

atical literacy in sets,
functions &

 m
athem

atical sym
bols

1
2

 3?
4

5
6

8
9

96

 101* 102*

H

G
iven a B

ig O
 expression, state w

hat it im
plies

(also: possibly big O
m

ega, big Theta)
7

8
9

10
12

14
18

85

I
C
ategorize an algorithm

 / data-structure operation
into com

m
on com

plexity classes {derive function?}
7

9
11

18
31

32
34

49
50

53
54

57
58

61
62

65
66

75
82

83
92

93
121

J
G

iven a specific problem
, use {resource

requirem
ents | com

plexity classes} w
hen

com
paring &

 contrasting different solutions.
3

12
13

15
18

85

K

Illustrate / trace / explain operation op from
 O

ps on
data structure d from

 D
s.

16
30

33
36

40
41

71
76

81
86

87
88

89
106

107

108
112

113

L
C
hoose / justify a data structure given a specific

program
 {? using analysis} {? +

com
plexity

classes}
17

25
29

40
41

42
43

44
73

78
81

82
86

90
91

110
119

M

Im
plem

ent (apply) operations from
 O

ps on / for
data structure d from

 D
s.

19
21

22
23

24
29

32
35

37
38

39
74

79
120

N

Illustrate / trace / explain recursive solutions.
26

46
47

 +
{tree operations}

 103* (* =
 m

ath/stats)
 97 (related to a problem

)

S
et of data structures D

s (in som
ething of a partial-order indicating im

portance): stacks, lists, queues, binary trees, binary search trees, hash tables,
heaps, priority queues, graphs.

O

Im
plem

ent recursive solutions to appropriate
problem

s.
26

P

Prove properties about {algorithm
s | program

s}
that use loops and recursion.

27
28

29
93

94
95

98
100

104

 +
{tree operations}

O
riginal S

ources:
List 1: A

C
M

/IEEE 2001 "A
rchitecture and O

rganization" learning outcom
es

List 2: U
B
C
 C

PS
C
 213

O
ther feedback: O

pinions on inclusion sought from
 U

B
C
-V

 and S
FU

-B
 (i.e., institution's m

ention
indicates coverage in years 1 &

 2).

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

FP
M

 co
n

se
n

su
s

O
th

e
r

fe
e
d

b
a
ck

1
D

escribe the progression of com
puter architeture from

 vacuum

tubes to V
LS

I.
Yes

S
FU

2
D

em
onstrate an understanding of the basic building blocks and

their role in the historical developm
ent of com

puter
architecture.

Yes
S
FU

, U
B
C

3
U

se m
athem

atical expressions to describe the functions of
sim

ple com
binational and sequential circuits.

Yes
S
FU

, U
B
C

4
D

esign a sim
ple circuit using the fundam

ental building blocks.
Yes

S
FU

, U
B
C

5
Explain the reasons for using different form

ats to represent
num

erical data.
Yes

S
FU

, U
B
C

6
Explain how

 negative integers are stored in sign-m
agnitude

and tw
os-com

plem
ent representation.

Yes
S
FU

, U
B
C

7
C
onvert num

erical data from
 one form

at to another.
Yes

S
FU

, U
B
C

8
D

iscuss how
 fixed-length num

ber representations affect
accuracy and precision.

Yes
S
FU

, U
B
C

9
D

escribe the internal representation of nonnum
eric data.

Yes
S
FU

, U
B
C

10
D

escribe the internal representation of characters, strings,
records and arrays.

Yes
S
FU

, U
B
C

11
Explain the organization of the classical von N

eum
ann m

achine
and its m

ajor functional units.
Yes

S
FU

, U
B
C

12
Explain how

 an instruction is executed in a classical von
N

eum
ann m

achine.
Yes

S
FU

, U
B
C

C
o

m
p

u
te

r A
rch

ite
ctu

re
 (C

o
m

p
u

te
r S

cie
n

ce
)

Enabling Learning O
bjectives

Prepared: O
ctober 23, 2009 (@

 U
niversity of the Fraser Valley)

13
S
um

m
arize how

 instructions are represented at both the
m

achine level and in the context of a sym
bolic assem

bler.
Yes

S
FU

, U
B
C

14
Explain different instruction form

ats, such as addresses per
instruction and variable length vs. fixed-length form

ats.
Yes

S
FU

, U
B
C

15
W

rite sim
ple assem

bly language program
 segm

ents.
Yes

S
FU

, U
B
C

16
D

em
onstrate how

 fundam
ental high-level program

m
ing

constructs are im
plem

ented at the m
achine-language lvel.

Yes
S
FU

, U
B
C

17
Explain how

 subroutine calls are handled at the assem
bly level.

Yes
S
FU

, U
B
C

18
Explain the basic concepts of interrupts and I/O

 operations.
Yes

S
FU

, U
B
C

19
Identify the m

ain types of m
em

ory technology.
Yes

S
FU

, U
B
C

20
Explain the effect of m

em
ory latency on running tim

e.
Yes

S
FU

, U
B
C

21
Explain the use of m

em
ory hierarchy to reduce the effective

m
em

ory latency.
Yes

S
FU

, U
B
C

22
D

escribe the principles of m
em

ory m
anagem

ent.
Yes

S
FU

, U
B
C

23
D

escribe the role of cache and virtual m
em

ory.
Yes

S
FU

24
Explain the w

orkings of a system
 w

ith (sim
ple) virtual m

em
ory

m
anagem

ent.
Yes

S
FU

, U
B
C

25
Explain how

 interrupts are used to im
plem

ent I/O
 control and

data transfers.
unsure

S
FU

26
Identify various types of buses in a com

puter system
.

unsure
S
FU

27
D

escribe data access from
 a m

agnetic disk drive.
unsure

S
FU

, U
B
C

28
C
om

pare the com
m

on netw
ork configurations.

unsure
29

Identify interfaces needed for m
ultim

edia support.
unsure

30
D

escribe the advantages and lim
itations of R

A
ID

 architectures.
unsure

31
C
om

pare alternative im
plem

ention of datapaths.
N

o
S
FU

32
D

iscuss the concept of control points and the generation of
control signals using hardw

ired or m
icroprogram

m
ed

im
plem

entations.
N

o
S
FU

33
Explain basic instruction-level parallelism

 using pipelining and
the m

ajor hazards that m
ay occur.

N
o

S
FU

34
D

iscuss the concept of parallel processing beyond the classical
von N

eum
ann m

odel.
N

o

35
D

escribe alternative architectures such as S
IM

D
, M

IM
D

, and
V
LIW

.
N

o

36
Explain the concepts of interconnection netw

orks and
characterize different approaches.

N
o

37
D

iscuss the special concerns that m
ultiprocessing system

s
present w

ith respect to m
em

ory m
anagem

ent and describe
how

 these are addressed.
N

o

38
D

escribe superscalar architectures and their advantages.
N

o
39

Explain the concept of branch prediction and its utility.
N

o
40

C
haracterize the costs and benefits of prefetching.

N
o

41
Explain speculative execution and identify the conditions that
justify it.

N
o.

42
D

iscuss the perform
ance advantages that m

ultithreading can
offer in an architecture along w

ith the factors that m
ake it

difficult to derive m
axim

um
 benefits from

 this approach.
N

o
U

B
C

43
D

escribe the relevance of scalability to perform
ance.

N
o

U
B
C

44
Explain the basic com

ponents of netw
ork system

s and
distinguish betw

een LA
N

s and W
A
N

s.
unsure

U
B
C

45
D

iscuss the architecture issues involved in the design of a
layered netw

ork protocol.
unsure

U
B
C

46
Explain how

 architectures differ in netw
ork and distributed

system
s.

unsure

47
D

iscuss architectural issues related to netw
ork com

puting and
distributed m

edia.
unsure

S
o

ftw
a
re

 E
n

g
in

e
e
rin

g
 (C

o
m

p
u

te
r S

cie
n

ce
)

S
um

m
ary Learning O

bjectives (w
ith cross-reference to Enabling Learning O

bjectives)
Prepared: O

ctober 22, 2009 (@
 U

niversity of the Fraser Valley)

#
S

u
m

m
a
ry Le

a
rn

in
g

 O
b

je
ctive

E
n

a
b

lin
g

 cro
ss-re

fe
re

n
ce

A
C
om

plete a team
-based project using appropriate

S
E tools and technologies (B

loom
's: S

ynthesis)
a
ll

B

D
em

onstrate com
prehension of softw

are-
engineering jargon including techniques and best
practices, e.g., refactoring, reusability, product
(B

loom
's: K

now
ledge)

1
66

a
n

d
 im

p
licit in

 m
o

st o
th

e
rs

C

S
elect, w

ith justification, an appropriate set of tools
to support the developm

ent of a particular softw
are

product. (Tools and Environm
ents)

7
8

9
10

11
12

31
32

33
40

42
71

72

D

D
isplay com

petence w
ith enabling technologies for

softw
are engineering, e.g., "m

ake", O
S
, ID

E,
brow

ser (Tools &
 Environm

ents; B
loom

's: A
pply)

E

D
em

onstrate through involvem
ent in a team

 project
the central elem

ents of team
 building and team

m

anagem
ent. (S

oftw
are Engineering M

anagem
ent)

25
34

35
36

37
44

59

F
A
pply com

m
on m

ethods for elicitation and analysis
to produce a set of softw

are requirem
ents for a

m
edium

-sized softw
are system

 (R
equirem

ents).
51

52
53

54
55

56
57

58
59

G

C
reate and specify the softw

are design for a
m

edium
-sized softw

are project using a softw
are

requirem
ent specification (e.g., structured or object-

oriented) and appropriate design notation.
(S

oftw
are D

esign &
 Q

uality)

14
15

16
17

18
19

20
21

22
23

24
25

30
43

69

H

Evaluate different designs prepared as solutions to
the sam

e problem
. (S

oftw
are D

esign &
 Q

uality)
26

27
28

29

I
Explain the softw

are life cycle and its phases
including the deliverables that are produced.
(S

oftw
are D

evelopm
ent Process &

 Lifecycle)
39

40
41

42

J

S
elect, w

ith justification, the softw
are developm

ent
m

odels and process elem
ents m

ost appropriate for
the developm

ent and m
aintenance of a particular

softw
are product (S

oftw
are D

evelopm
ent Process &

Lifecycle)

43
44

K

Q
uickly construct high-quality softw

are to realize a
design (C

onstruction)
2

3
4

5
6

7
8

9
10

11
12

13
45

L
Test code w

ith unit tests, system
 tests, and user

tests. (Testing)
60

61
62

63
64

66
67

68
69

70

M

D
iscuss issues arising in softw

are deploym
ent,

m
aintenance and support. (Production --

D
eploym

ent, m
aintenance, support)

30
46

48
49

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

O
rig

in
a
l so

u
rce

1
D

efine softw
are engineering, and describe its history.

S
FU

K

2
Im

plem
ent a softw

are system
. (M

oved toS
um

m
ary O

bjective
K
)

S
FU

K

3
Im

plem
ent design through coding. (M

oved to S
um

m
ary

O
bjective K

)
B
C
IT

K

4
Q

uickly im
plem

ent high-quality code from
 a design. (M

oved to
S
um

m
ary O

bjective K
)

U
B
C

K

5
B
reak up im

plem
entation w

ork into units for parallel
im

plem
entation.

U
B
C

K

6
Explain several im

plem
entation philosophies.

U
B
C

K

C

D

7
Im

prove code quality and productivity by using softw
are tools.

U
B
C

K

C

D

8
C
oordinate im

plem
entation efforts using a code repository.

U
B
C

K

C

D

9
List the typical operations provided by an S

C
M

 tool.
U

V
ic

K

C

D

10
D

escribe various aspects of softw
are configuration

m
anagem

ent.
S
FU

K

C

D

11
Justify the use of softw

are-configuration m
anagem

ent (S
C
M

)
tools such as S

ubversion, C
V
S
, etc.

U
V
ic

K

C

D

12
Identify and elim

inate problem
s using an issue tracking

system
.

U
B
C

K

13
D

esign and apply code standards.
S
FU

G

H

14
Explain and apply good design principles.

U
B
C

G

H

15
Explain and apply com

m
on design patterns.

U
B
C

G

H

16
S
elect and apply appropriate design patterns in the

construction of a softw
are application.

B
C
IT, U

B
C
, A

C
M

/IEEE
G

H

17
R
ecognize basic architectures.

U
B
C

G

H

18
D

esign and specify a system
's architecture.

S
FU

G

H

19
D

esign and specify the class-level structure of a softw
are

system
.

S
FU

G

H

20
Identify the relationships betw

een classes.
B
C
IT

G

H

S
o

ftw
a
re

 E
n

g
in

e
e
rin

g
 (C

o
m

p
u

te
r S

cie
n

ce
)

Enabling Learning O
bjectives (w

ith cross-reference to S
um

m
ary Learning O

bjectives)
Prepared: O

ctober 22, 2009 (@
 U

niversity of the Fraser Valley)

S
u

m
m

a
ry cro

ss-re
fe

re
n

ce

21
Extend the analysis classes to represent the design use cases
and identify specific object instances.

B
C
IT

G

H

22
A
dd/m

odify relationships betw
een classes and objects to

further extend the design.
B
C
IT

G

H

23
R
epresent analysis and design m

odels using use case,
sequence, collaboration, class, and state m

achine diagram
s.

B
C
IT

G

H

24
D

esign a project w
ith U

M
L.

U
B
C

G

H

E

25
D

esign a project in a group setting.
U

B
C

G

H

26
D

escribe the qualities of a good softw
are system

 and
understand their value.

S
FU

G

H

27
D

iscuss the properties of good softw
are design including the

nature and the role of associated docum
entation.

U
V
ic

G

H

28
Evaluate the quality of alternative softw

are designs based on
key design principles and concepts.

A
C
M

/IEEE
G

H

29
M

easure the size of a project.
(O

kanagan)
G

H

M

30

U
se feedback from

 im
plem

entation to refine design.
B
C
IT

C

D

31
A
nalyze and evaluate a set of tools in a given area of softw

are
developm

ent (e.g. m
anagem

ent, m
odeling, or testing).

U
V
ic, A

C
M

/IEEE
C

D

32
D

em
onstrate the capability to use a range of softw

are tools in
support of the developm

ent of a softw
are product of m

edium

size.
U

V
ic

C

D

33

U
tilize tools to m

anage and support a softw
are developm

ent
team

 such as softw
are configuration m

anagem
ent tools

(version control repositories), project m
anagem

ent tool (task
schedulers, m

eetings) and com
m

unication tools (em
ail, shared

w
ebsites, instant m

essaging).

S
FU

E

34
Explain the process by w

hich they w
ould organize the solution

to a m
edium

-sized non-trivial problem
 involving a group of

program
m

ers.
U

V
ic

E

35

A
pply good project m

anagem
ent practices to a softw

are
project, such as risk analysis, task/resource scheduling,
hum

an resource m
anagem

ent, and continuous progress
m

onitoring.

S
FU

E

36
Identify and resolve com

m
on team

-related issues such as
com

m
unication problem

s and decision m
aking.

S
FU

E

37
R
eview

 and evaluate team
 m

em
ber perform

ance.
S
FU

I
J

38
Explain the softw

are life cycle and its phases including the
deliverables that are produced. (M

oved to S
um

m
ary O

bjective
I)

U
V
ic, U

B
C

I
J

39

For each of several softw
are project scenarios, describe the

project's place in the softw
are life cycle, identify the particular

tasks that should be perform
ed next, and identify m

etrics
appropriate to those tasks.

U
V
ic

I
J

M

40
Identify the principal issues associated w

ith softw
are evolution

and explain their im
pact on the softw

are life cycle.
U

V
ic

I
J

41
Explain the risks of skipping or reducing a phase of the
lifecycle.

U
B
C

C

D

I
J

42
R
ecognize the types of tools that are used in each phase (of

the softw
are life cycle).

U
B
C

G

H

I
J

43
C
om

pare the traditional w
aterfall developm

ent m
odel to the

increm
ental m

odel, the agile m
odel, the object-oriented m

odel,
and other com

m
on m

odels.
U

V
ic, S

FU
I

J

44
A
pply a softw

are life cycle m
odel of O

bject-O
riented paradigm

,
and its m

ethodology to a m
ulti-m

em
ber softw

are developm
ent

project.
S
FU

I
J

K

45
C
reate user docum

entation.
S
FU

M

46
D

iscuss the challenges of m
aintaining softw

are.
U

V
ic

M

47
D

iscuss issues arising in softw
are system

 deploym
ent,

m
aintenance, and support. (M

oved to S
um

m
ary O

bjective M
)

S
FU

M

48
D

iscuss the challenges of m
aintaining legacy system

s and the
need for reverse engineering.

A
C
M

/IEEE
M

49
Identify w

eaknesses in a given sim
ple design, and highlight

how
 they can be rem

oved through refactoring.
A
C
M

/IEEE
M

50

A
pply key elem

ents and com
m

on m
ethods for elicitation and

analysis to produce a set of softw
are requirem

ents for a
m

edium
-sized softw

are system
. (M

oved to S
um

m
ary O

bjective
F)

U
V
ic

F

51
A
rgue for the need for requirem

ents.
U

B
C

F

52
Eliciting, analyzing, specifying, and verifying functional and
non-functional requirem

ents.
S
FU

F

53
D

escribe several types of requirem
ents.

U
B
C

F
54

Elicit requirem
ents from

 a client.
U

B
C

F
55

Identify and com
plete use cases.

B
C
IT

F
56

R
efine use cases to serve as foundation for design.

B
C
IT

F
57

Identify classes based on use cases.
B
C
IT

F
58

R
ecognize good and bad requirem

ents.
U

B
C

F
59

Explain the typical difficulties of technical com
m

unication.
U

B
C

E

F
60

C
onstruct a softw

are test plan.
B
C
IT, U

V
ic

L

61
C
reate, evaluate and justify, and im

plem
ent a test plan for a

m
edium

-size code segm
ent.

U
V
ic, B

C
IT

L

62
D

istinguish betw
een the different types and levels of testing

(unit, integration, system
s and acceptance) for m

edium
-size

softw
are products.

U
V
ic

L

63
C
reate test cases.

B
C
IT,U

V
ic

L

64
U

ndertake, as part of a team
 activity, an inspection of a

m
edium

-size code segm
ent.

U
V
ic

L

65
Test code w

ith units tests, system
 tests, and user tests.

(M
oved to S

um
m

ary O
bjective L)

U
B
C
, B

C
IT, U

V
ic

C

D

L

66
Explain basic testing term

inology.
U

B
C

L

67
R
ecognize com

m
on testing fram

ew
orks em

ployed in the
industry.

U
B
C

L

68
Verifying and validating all artifacts created during the process.

S
FU

G

H

I
J

L

69
Testing the resulting system

 through unit testing, integration
testing, system

 testing, etc.
S
FU

L

70
D

escribing user acceptance testing.
S
FU

L

71
D

escribe the role that tools can play in the validation of
softw

are.
U

V
ic

C

D

L

72
W

rite test scripts.
B
C
IT, U

V
ic

C

D

L

Enabling Learning O
bjectives

Prepared: O
ctober 23, 2009 (@

 U
niversity of the Fraser Valley)

W
ording for all learning outcom

es prepared by w
orking group at U

FV
 m

eeting.

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

1
Identify the latest trends and developm

ent in m
icrocom

puters.
O

verall

2
D

escribe and classify the com
ponents of com

puters and
peripherals.

3
D

escribe, classify and identify how
 the various PC

 com
ponents

are connected and they com
m

unicate to accom
plish different

tasks

4
D

escribe the construction and operation of the C
entral

Processing U
nit in term

s of instruction execution.

5
Explain the structure and operation of hierarchy of m

em
ory in

term
s of program

 execution.

6
Explain how

 m
achine language provides the foundation for all

program
m

ing languages.
7

C
om

pare different C
PU

 and PC
 architectures.

8
Install, m

aintain and troubleshoot basic com
puter hardw

are
and softw

are in a LA
N

 environm
ent, dem

onstrating basic
problem

 solving m
ethodologies.

9
U

se the Internet to assist in solving hardw
are problem

s and
installing softw

are and firm
w

are updates from
 the Internet.

10
Form

at, partition and reorganize a disk.

11
D

escribe how
 disk storage w

orks, and explain the factors that
influence perform

ance.

12
Identify and understand the basic hardw

are and softw
are

necessary to connect the PC
 to a netw

ork.
A
lso O

S

13
Explain the need for and the technologies available for backup
and restore.

H
a
rd

w
a
re

 (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)

A
d

d
itio

n
a
l C

o
m

m
e
n

ts

14
D

escribe how
 video cards and m

onitors w
ork; determ

ine the
settings of both; m

anipulate the param
eters affecting

perform
ance.

15
D

escribe how
 data is stored to and retrieved from

 optical disk.

16
D

escribe how
 data is stored to and retrieved from

 flash R
A
M

devices such as U

S
B
 m

em
ory, S

D
 cards and other solid state

m
em

ory technologies.
17

D
escribe how

 audio devices w
ork in a personal com

puter.

18
Install and configure a W

indow
s S

erver and netw
orking

services.
O

S

W
e
b

 Le
a
rn

in
g

 (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)
S
um

m
ary Learning O

bjectives (w
ith cross-reference to Enabling Learning O

bjectives)
Prepared: O

ctober 22, 2009 (@
 U

niversity of the Fraser Valley)

#
S

u
m

m
a
ry Le

a
rn

in
g

 O
b

je
ctive

E
n

a
b

lin
g

 cro
ss-re

fe
re

n
ce

A
G

iven a problem
, suggest an internet infrastructure

suitable to solve the problem
 and justify your

choice.
1

2
3

4
5

6
7

57
61

62
64

66

B

U
se services for com

m
unication and to access

internet-based resources.
5

6
8

36
37

41
67

C

A
pply copyright law

, ethics and internet law
 to a

w
ebsite.

8
38

44

D

C
reate a dynam

ic w
ebsite that incorporates a user

friendly design.
16

17
22

23
24

25
26

27
28

29
30

31
32

33
39

42
43

60
68

E

C
reate a dynam

ic w
ebsite that incorporates

X
H

TM
L/C

S
S
.

8
9

10
11

12
13

14
15

16
27

33
34

35
43

55

56
57

58
60

63

F
C
reate a dynam

ic w
ebsite that incorporates a

scripting language (client- or server-side).
8

39
43

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
65

G

C
reate a dynam

ic w
ebsite that incorporates

generally accepted standards.
9

13
25

26
42

43
60

61
62

H

C
reate a dynam

ic w
ebsite that incorporates w

eb
standards.

8
42

43
60

67

I
C
reate a secure w

ebsite that accesses a database.
8

43
58

61
62

65

J
U

se an appropriate range of tools to create a
m

ultim
edia w

ebsite.
18

19
20

21
22

25
27

33
34

35
37

38
40

41
42

56
67

68

O
riginal source key:

LC
 is for Langara C

ollege
O

C
 is for O

kanagan C
ollege

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

O
rig

in
a
l so

u
rce

1
D

escribe the m
ajor hardw

are and softw
are com

ponents and
how

 they are related to the internet infrastructure
LC

A

2
D

escribe the roles and im
portance of TC

P/IP in the Internet.
LC

A
3

D
escribe how

 the D
N

S
 system

 w
orks.

LC
A

4
List several of the different top-level dom

ains and describe
their intended audiences.

LC
A

5
List several application level protocols (e.g., PO

P, S
M

TP, FTP,
H

TTP).
LC

A
B

6
Provide exam

ples of how
 and w

here they get used on the
Internet.

LC
A

B

7
C
om

pare client/server and peer-to-peer architectures.
LC

A

8
List and explain several of the considerations w

hen a com
pany

hosts a w
eb site (e.g., am

ount of disk space, m
onthly transfer

lim
its, etc.).

LC
A

B
C

E

F
H

I

9
C
reate W

3C
 valid X

H
TM

L w
eb pages using headings,

paragraphs, logical form
atting, lists, tables, im

ages, hyperlinks
and character entities.

LC
E

G

10
D

ifferentiate betw
een an absolute and a relative U

R
L and be

able to construct the correct one at the correct tim
e.

LC
E

11
U

se the X
H

TM
L tags div and span to create sections for styling.

LC
E

12
C
reate tag, pseudo-class, class and id selectors using basic

properties (e.g., font, color, text-decoration, text-align,
background, list-style-type, etc.).

LC
E

13
Place properly form

ed C
S
S
 rules in an external or internal style

sheet or as an inline style.
LC

E
G

W
e
b

 Le
a
rn

in
g

 (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)
Enabling Learning O

bjectives (w
ith cross-reference to S

um
m

ary Learning O
bjectives)

Prepared: O
ctober 22, 2009 (@

 U
niversity of the Fraser Valley)

S
u

m
m

a
ry cro

ss-re
fe

re
n

ce

14
A
nalyse a set of C

S
S
 rules for the cascade effect and render

the resultant styling to a w
ebpage.

LC
E

15
D

escribe the C
S
S
 box m

odel.
LC

E

16
U

se the C
S
S
 box m

odel and positioning properties to create a
w

eb page w
ith either 2 or 3 colum

ns, a m
ast head and a

footer.
LC

D
E

17
C
om

pare and contrast various w
eb page layouts: liquid, fixed

and jello/elastic.
LC

D

18
D

escribe the kinds of pictures that are best stored in raster
and vector form

ats.
LC

J

19
D

escribe the characteristics of raster and vector form
ats,

including typical filenam
e extensions, am

ount of transparency
perm

itted and type of com
pression used.

LC
J

20
D

escribe how
 resolution and pixel depth (8-bit indexed, 24-bit

R
B
G

 and 8-bit grayscale) affect the appearance of a raster
im

age and its stored size on disk.
LC

J

21

U
se an im

age m
anipulation program

 to perform
 the follow

ing
actions: scaling, rotating, cropping, dow

n sam
pling, repairing

an im
age by erasing an object, rem

oving the background from

a raster im
age, converting betw

een the various file form
ats,

creating a com
posite using layers and layer m

asks, and
creating sim

ple G
IF anim

ations using layers.

LC
J

22
D

escribe the R
G

B
, H

S
V
 and C

M
YK

 color m
odels.

LC
D

J

23
S
elect colors based on the color harm

onies: m
onochrom

atic,
com

plem
entary, analogous, and triadic.

LC
D

24
D

escribe the five basic w
ebpage design principles (contrast,

repetition, alignm
ent, proxim

ity, com
m

unicability).
LC

D

25
D

esign a w
eb site using the five basic w

ebpage design
principles.

LC
D

G

J

26
C
ritique a w

eb site using the five basic w
ebpage design

principles.
LC

D
G

27
D

esign a sm
all w

eb site for a m
obile device taking into account

the lim
ited screen resolution, colour depth, bandw

idth, and
reduced keyboard.

LC
D

E
J

28
D

escribe the characteristics of exact and am
biguous site

organizational schem
es, along w

ith their sub-schem
es, giving

exam
ples of w

here they are used appropriately.
LC

D

29
S
elect an appropriate organizational schem

e for a w
eb site.

LC
D

30
C
om

pare tw
o w

eb sites according to their organizational
schem

e
LC

D

31
D

escribe the various kinds of site organizational structures.
LC

D

32
Identify on a site the prim

ary and secondary navigation
elem

ents (e.g., breadcrum
b trails, site m

aps, and site index).
LC

D

33
C
reate a w

eb site w
ith prim

ary and secondary navigation
elem

ents.
LC

D
E

J

34
U

se a w
eb authoring tool (eg D

ream
w

eaver) to m
aintain a

w
ebsite.

LC
E

J

35
C
reate and use authoring tool (eg D

ream
w

eaver) tem
plates to

create a w
ebsite.

LC
E

J

36
D

escribe w
hat a search engine is and how

 to provide it queries
using A

N
D

, O
R
, N

O
T and exact phrases.

LC
B

37
List and use several search engine optim

ization techniques to
im

prove a w
ebsite’s ranking in the search results.

LC
B

J

38
A
nalyse a site’s log file to determ

ine w
hen visitors arrive, from

w

here, and w
hich pages they view

.
LC

C
J

39
D

escribe how
 cookies can be used in a w

eb site to custom
ize

the appearance for return visitors.
LC

D
F

40
U

se an available tool to create a sim
ple tw

o dim
ensional

anim
ation using m

ultiple layers and object tw
eening.

LC
J

41
D

escribe the fundam
ental characteristics and uses of e-

com
m

erce, blogs, w
ikis, content m

anagem
ent system

s, and
R
S
S
 feeds.

LC
B

J

42
U

se an available content m
anagem

ent system
 to create a

w
ebsite

LC
D

G

H

J

43
C
reate a secure e-com

m
erce w

eb site using an appropriate
existing paym

ent processing service
LC

D
E

F
G

H

I

44
D

iscuss the legal issues of copyright, tradem
arks, hate

literature, libel, jurisdiction and the w
eb.

LC
C

45
U

se a scripting language to w
rite several program

s to solve
problem

s
LC

F

46
Insert a scripting l'anguage program

 into an X
H

TM
L page.

LC
F

47
U

se built-in operators, variables, literals to create expressions.
LC

F
48

Learn how
 to use scalar, array and hash variables in a script.

O
C
, LC

F
49

U
se [the scripting language's] string m

anipulating features.
O

C
F

50
D

escribe the follow
ing constructs – selection, repetition,

subprogram
s.

O
C
, LC

F

51
U

se both selection structures – if, sw
itch.

LC
F

52
U

se all repetition structures – w
hile, for, do.

LC
F

53
C
reate a function to solve a problem

.
LC

F
54

D
istinguish betw

een void and value returning functions.
LC

F

55
U

se all X
H

TM
L form

 tags (buttons, text, textarea, radio,
checkbox, select).

LC
E

F

56
D

escribe the D
ocum

ent O
bject M

odel (JavaS
cript? O

bject
H

ierarchy) and properties and m
ethods of form

 elem
ents.

LC
E

F
J

57
U

se events and event handlers to create an interactive w
eb

page.
LC

A
E

F

58
D

escribe the process of validating and subm
itting form

 data.
LC

E
F

I
59

S
ave data to a data file and a database.

O
C

F
60

C
reate a dynam

ic w
eb site

LC
D

E
F

G

H

61
Explain the role of a C

G
I script in creating interactive W

eb
sites.

O
C

A
F

G

I

62
W

rite a sm
all C

G
I script to dynam

ically create a w
eb page in

response to a request, collect data from
 a W

eb page visitor or
send an em

ail
LC

, O
C

A
F

G

I

63
U

se server side includes to dynam
ically create a w

eb page.
LC

E
F

64
D

escribe som
e of the m

ajor historical events in the evolution
of the internet.

(added by FPM
)

A

65
A
pply the appropriate O

S
 security and perm

issions to allow
 a

script to execute.
(added by FPM

)
F

I

66
D

escribe som
e of the encryption techniques used on the

Internet.
(added by FPM

)
A

67
U

se S
S
L tools to create a secure connection.

(added by FPM
)

B
H

J

68
C
reate a video or audio podcast.

(added by FPM
)

D
J

In
fo

rm
a
tio

n
 M

a
n

a
g

e
m

e
n

t (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)
S
um

m
ary Learning O

bjectives (w
ith cross-reference to Enabling Learning O

bjectives)
Prepared: O

ctober 22, 2009 (@
 U

niversity of the Fraser Valley)

#
S

u
m

m
a
ry Le

a
rn

in
g

 O
b

je
ctive

E
n

a
b

lin
g

 cro
ss-re

fe
re

n
ce

A
C
orrectly use term

inology relevant to inform
ation

m
anagem

ent.
1

2
3

4
5

B

D
escribe organizational needs relating to data

acquisition, use, retention and disposition.
6

7
8

9
10

41
42

43
44

C

D
escribe different database m

odels and
differentiate betw

een them
.

20
21

22
23

24
49

D

M
odel a relational database.

30
31

35
36

37
E

D
esign a norm

alized database.
25

26
27

28
29

33
34

35
36

F
W

rite syntactically correct and accurate S
Q

L
statem

ents.
11

12
13

14
15

16

G

Em
bed relational technology in a program

m
ing or

w
eb environm

ent.
18

19
49

50
51

In
fo

rm
a
tio

n
 M

a
n

a
g

e
m

e
n

t (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)
Enabling Learning O

bjectives (w
ith cross-reference to S

um
m

ary Learning O
bjectives)

Prepared: O
ctober 22, 2009 (@

 U
niversity of the Fraser Valley)

O
riginal sources of enabling learning outcom

es (except w
here noted in the com

m
ents) are:

A
C
M

/IEEE 2001 C
S
 C

urriculum
 Proposal, "Inform

ation M
anagem

ent" section
A
C
M

 2008 C
urriculum

 Proposal, "Inform
ation M

anagem
ent" section

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

1
D

ifferentiate and use key term
s such as: inform

ation, data,
database, database m

anagem
ent system

, m
etadata, data

m
ining.

A

2
Explain the role of data, inform

ation, and databases in
organizations.

A

3
Explain how

 data storage and retrieval has changed over tim
e.

A

4
Explain the advantages of a database approach com

pared to
traditional file processing.

A

5
Identify and explain the general types of databases: personal,
w

orkgroup, departm
ent, enterprise.

A

6
Explain how

 the grow
th of the Internet and dem

ands for
inform

ation for users outside the organization (custom
ers and

suppliers) im
pact data handling and processing.

B

7
D

efine data quality, accuracy and tim
eliness, and explain how

their absence w

ill im
pact organizations.

B

8
D

escribe m
echanism

s for data collection and their im
plications

(autom
ated data collection, input form

s, sources).
B

9
Explain basic issues of data retention, including the need for
retention, physical storage, security.

B

10
Explain w

hy data backup is im
portant and how

 organizations
use backup and recovery system

s.
B

11
Form

ulate and test S
Q

L queries using S
ELEC

T FR
O

M
 W

H
ER

E
O

R
D

ER
 B

Y blocks.
F

12
R
ecognize the need for logical operators, set operators,

U
N

IO
N

, D
IS

TIN
C
T, LIK

E, and B
ETW

EEN
 operators, and use

them
 appropriately.

F

S
u

m
m

a
ry cro

ss-re
fe

re
n

ce
C

o
m

m
e
n

t

13
Form

ulate and test queries using aggregate functions w
ith

G
R
O

U
P B

Y H
A
V
IN

G
 clause.

F

14
Form

ulate and test queries using use sub-queries, V
IEW

S
 and

joins in com
binations w

ith the options listed above.
F

15
Form

at output (header, footer, totals, subtotals etc.) reports
using S

Q
L options and post-processing features of

environm
ent like S

Q
L*Plus.

F

16

D
eclare appropriate data types, sizes and constraints on

elem
ents and their com

binations including D
ATE and TIM

E
types, create TA

B
LE/V

IEW
 w

ith S
ELEC

T A
S
, and use IN

S
ER

T,
U

PD
ATE and D

ELETE options.

F

17
D

em
onstrate an understanding of X

Path and X
Q

uery.
18

Form
ulate and test queries using query by exam

ple.
G

19

U
se em

bedded S
Q

L queries.
G

20

G
ive a brief history of database m

odels and their evolution.
C

21
D

escribe the features of the relational m
odel including

relations, tuples, attributes, dom
ains and operators.

C

22
D

em
onstrate select, project, union, intersection, set difference,

and natural join relational operations using sim
ple exam

ple
relations provided.

C

23
List sim

ilarities and differences betw
een object-oriented

database concepts and features and those of relational
databases.

C

24
Explain the relationship betw

een functional dependencies and
keys and give exam

ples.
C

25
Explain how

 having norm
al form

 relations reduces or
elim

inates attribute redundancy and update/delete anom
alies.

E

26
N

orm
alize a set of relations to at least fourth norm

al form
E

27
Explain the prim

ary key requirem
ents for relational integrity.

E

28
D

efine and explain the need for referential integrity.
E

29
G

ive exam
ples of user-defined integrity constraints.

E

30
D

escribe and interpret Entity R
elationship or U

M
L data

m
odeling diagram

s.
D

31
C
reate sim

ple Entity R
elationship or U

M
L data m

odeling
diagram

s.
D

D
elete?

S
uitable?

S
uitable?

S
uitable?

FPM
 w

orking group
FPM

 w
orking group

32
D

escribe and interpret Enhanced Entity R
elationship diagram

s.
33

S
elect appropriate business rules for a given scenario.

E

34
D

esign and defend your design for a relational database for a
given scenario.

E

35
D

escribe the relationship betw
een a logical m

odel and a
physical m

odel.
D

E

36
S
elect a database pattern or standard m

odel that effectively
corresponds to a given scenario.

D

E

37
Explain the use of C

A
S
E tools in data m

odeling.
D

38

D
escribe data integration.

39
D

escribe m
eta-m

odeling.
40

D
escribe a data w

arehouse, its basic structure, etc.

41
D

istinguish betw
een data adm

inistration and database
adm

inistration.
B

42
A
pply ethical principles to database design, developm

ent and
use.

B

43
Explain the concept of database security.

B

44
Explain the concept of backup and recovery.

B

45
D

istinguish betw
een hom

ogeneous, heterogeneous and
federated distributed databases.

46
Explain the concept of replication as it pertains to distributed
databases.

47
D

istinguish betw
een horizontal and vertical replication as it

pertains to distributed databases.
48

D
escribe a client-server database architecture.

49
D

escribe an n-tier database architecture.
C

G

50
Explain the role of O

D
B
C
, JD

B
C
 and X

M
L in the im

plem
entation

of an n-tier database architecture.
G

51
D

escribe the concept of w
eb services and the role of S

O
A
P.

G

52
D

em
onstrate an understanding of online analytical processing

and data w
arehouse system

s.

D
elete.

D
esign?

D
elete.

D
elete.

D
elete.

S
uitable?

S
uitable?
D

elete.

D
elete.

FPM
 w

orking group

FPM
 w

orking group

D
elete.

D
elete.

D
elete.

Enabling Learning O
bjectives

Prepared: O
ctober 22, 2009 (@

 U
niversity of the Fraser Valley)

O
riginal source for all learning outcom

es are the:
"N

etw
ork C

entric" category of the A
C
M

/IEEE 2001 C
S
 C

urriculum
 Proposal

"N
etw

orking" item
s from

 the A
C
M

 2008 IS
/IT C

urriculum
 proposal

A
s each enabling learning objective corresponds to a single sum

m
ary objective, the first occurrence of the sum

m
ary

objective w
ill contain the entire text of that objective.

#
E
n

a
b

lin
g

 Le
a
rn

in
g

 O
b

je
ctive

1
M

anage netw
orked accounts

A

2
Enhance netw

ork perform
ance

A
3

Protect servers from
 data loss

A
4

D
iscuss the benefits of netw

ork m
anagem

ent and planning
A

5
D

evelop netw
orking standards, policies, procedures and

docum
entation

A

6
D

escribe the m
ain challenges faced in a m

odern office
environm

ent using netw
orks

A

7
Troubleshoot a netw

ork follow
ing a structured approach

A

8
D

iscuss the types of specialized equipm
ent and other

resources available for troubleshooting
A

9
C
onfigure IPX

 access lists and S
A
P filters to control basic

N
ovell traffic.

A

10
Enable the N

ovell IPX
 protocol and configure interfaces.

A
11

M
onitor N

ovell IPX
 operation on the router.

A

12
A
pply basic data com

m
unication theory to the perform

ance
analysis of netw

orks.
A

13
Explain the O

S
I reference m

odel
B

14
Explain the O

S
I reference m

odel's layers and their
relationships to netw

orking hardw
are and softw

are
B

N
e
tw

o
rk

s (In
fo

rm
a
tio

n
 S

yste
m

s /
 In

fo
rm

a
tio

n
 T

e
ch

n
o

lo
g

y)

S
u

m
m

a
ry cro

ss-re
fe

re
n

ce
M

anage a netw
ork for optim

al perform
ance, and

troubleshoot the netw
ork.

K
now

 the m
ajor com

m
unication architectural

m
odels.

15
D

iscuss the layered architecture of protocols, and describe
com

m
on protocols and their im

plem
entation

B

16
D

escribe the different m
ajor netw

ork architectures, C
om

pare
and contrast them

.
B

17
O

utline the lim
itations, advantages, and disadvantages of each

standard or architecture
B

18
D

efine netw
ork services

C

19
D

iscuss the differences betw
een centralized and client/server

com
puting

C

20
D

efine the client/server netw
orking environm

ent
C

21
D

iscuss the basics of W
eb-based com

puting environm
ents

C

22
D

escribe the basic concepts associated w
ith w

ide area
netw

orks (W
A
N

s)
C

23
D

escribe how
 to use the Internet for a private connection using

V
PN

s
C

24
D

escribe the benefits of virtual LA
N

s.
C

25
D

iscuss the criteria for S
electing the R

ight Type of N
etw

ork
D

26
D

iscuss the criteria for S
electing a Topology

D

27
D

escribe the basic steps required for netw
ork operating system

installation

D

28
Install and configure netw

ork applications
D

29
C
reate a netw

ork security plan
D

30
D

escribe W
A
N

 protocols, and softw
are and hardw

are
technologies to build W

A
N

s.
D

31
D

esign, build, and m
aintain a sm

all local area netw
ork

D
32

D
escribe the process of setting up peer-to-peer to netw

orks.
D

33
List com

m
ands to configure Fram

e R
elay LM

Is, m
aps, and

subinterfaces.
D

34
List com

m
ands to m

onitor Fram
e R

elay operation in the router.
D

35
D

escribe the differences betw
een Local and W

ide A
rea

N
etw

orks
E

Identify specific architectural features in
netw

orks.

C
onstruct netw

orks ranging from
 sm

all Lans to
large W

A
N

s.

K
now

 the definitions for a broad range of
netw

ork term
s.

36
Provide definitions for basic netw

orking term
s: C

lients, Peers,
S
ervers, the N

etw
ork M

edium
, N

etw
ork Protocols, N

etw
ork

S
oftw

are, N
etw

ork S
ervices

E

37

D
escribe the basic N

etw
ork Types: Peer-to-Peer, S

erver-B
ased,

S
torage-A

rea N
etw

orks (S
A
N

s), Personal A
rea N

etw
orks

(PA
N

s), H
ybrid N

etw
orks, S

erver H
ardw

are R
equirem

ents,
S
pecialized S

ervers

E

38
D

efine and understand technical term
s related to cabling,

including attenuation, crosstalk, shielding, and plenum
E

39
D

escribe a range of netw
ork topologies

F

40
D

escribe the basic types of H
ubs: A

ctive H
ubs, Passive H

ubs,
H

ybrid H
ubs

F

41
Identify three m

ajor types of netw
ork cabling and of w

ireless
netw

ork technologies
F

42
D

ecide w
hat kinds of cabling and connectors are appropriate

for particular netw
ork environm

ents
F

43
Explain how

 netw
ork adapters prepare data for transm

ission,
accept incom

ing netw
ork traffic, and control how

 netw
orked

com
m

unications flow
F

44
Explain how

 larger netw
orks m

ay be im
plem

ented using
devices such as repeaters, bridges, routers, brouters,
gatew

ays, and sw
itches

F

45
C
onfigure routers to setup different types of LA

N
s and W

A
N

s
using LA

N
 and W

A
N

 protocols.
F

46
D

escribe the advantages and m
ethods of netw

ork
segm

entation.
F

47
N

am
e and describe tw

o sw
itching m

ethods.
F

48
D

escribe full- and half-duplex Ethernet operation.
F

49
D

escribe the features and benefits of Fast Ethernet.
F

50
Explain and describe the characteristics of various transm

ission
m

edia.
F

K
now

 the different netw
ork devices,

transm
ission m

edia and topologies for
com

bining them
 into netw

orks.

51
C
ontrast base band and broadband transm

ission technologies
G

52
D

escribe w
ireless transm

ission techniques
G

53
D

escribe rudim
entary signaling technologies for m

obile
com

puting
G

54
Explain the IEEE 802 netw

orking m
odel and related standards

G

55
D

escribe the function and structure of packets in a netw
ork,

and analyze them
G

56
Explain the function of protocols in a netw

ork (e.g., TC
P/IP

G

57
D

escribe various channel access m
ethods, C

om
pare and

contrast them
.

G

58
D

iscuss the different types of carriers used for long-haul
netw

ork com
m

unications
G

59
Identify virtual LA

N
s, LA

N
 sw

itching, Fast Ethernets, Fram
e

R
elay, IS

D
N

 netw
orking.

G

60
Identify the uses, benefits, and draw

backs of advanced W
A
N

technologies such as ATM

, FO
O

I, S
O

N
ET, and S

M
D

S
G

61
List the required IPX

 address and encapsulation type.
G

62
D

escribe netw
ork congestion problem

 in Ethernet netw
orks.

G

63
D

istinguish betw
een cut-through and store-and-forw

ard LA
N

sw

itching.
G

64
D

escribe the operation of the S
panning Tree Protocol and its

benefits.
G

65
D

ifferentiate betw
een the follow

ing W
A
N

 services: LA
PB

,
Fram

e R
elay, IS

D
N

/LA
PD

, H
D

LC
, PPP, and D

D
R
.

G

66
R
ecognize key Fram

e R
elay term

s and features.
G

67
Identify PPP operations to encapsulate W

A
N

 data on C
isco

routers.
G

68
S
tate a relevant use and context for IS

D
N

 netw
orking.

G

69
Identify IS

D
N

 protocols, function groups, reference points, and
channels.

G

70
D

escribe C
isco's im

plem
entation of IS

D
N

 B
R
I

G

71
Explain and identify key protocol inform

ation given sam
ples of

captured packets.
G

K
now

 a w
ide variety of data com

m
unication

protocols and know
 the advantages and

disadvanteges of each one.

72
D

escribe today's data com
m

unications industry as a system
 of

interconnected com
ponents.

73
R
ecount netw

ork adapter enhancem
ents that can im

prove
perform

ance
74

Im
plem

ent the LA
N

 protocols. ???
75

Im
plem

ent TC
P/IP. ???

76
U

nderstand the standards governing netw
ork architectures

77
U

nderstand the various netw
orking softw

are com
ponents

78
D

iscuss interconnectivity issues in a m
ultivendor environm

ent

79
D

efine the various options to im
plem

ent a m
ultivendor netw

ork
environm

ent

80
U

nderstand the various alternatives used in netw
ork

com
m

unications

81
Explain the role of driver softw

are in netw
ork adapters

H

82
Explain the operation fundam

entals of netw
ork operating

system
s

H

83
Provide a basic overview

 of netw
orks, at the highest level.

I

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

Provide a basic overview
 of netw

orks, at the
highest level.

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

(R
e
co

m
m

e
n

d
 re

m
o

va
l)

K
now

 how
 a netw

ork O
S
 w

orks and be able to
install and configure it.

	Computing Education Flexible Pre-Major Analysis Final Report Feb 10 2010.pdf
	final_report_appendix.pdf
	intro_enabling
	algorithms_enabling
	algorithms_summary
	architecture_enabling
	seng_summary
	seng_enabling
	hardware_enabling
	weblearning_summary
	weblearning_enabling
	information_summary
	information_enabling
	network_enabling

